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Local Odometry Techniques for a Differential Wheeled Robot Using
Bumper’s Sensors and Wheels’ Encoders

Claudio S. De Mutiis
Dept. of Informatics

King’s College London
London, United Kingdom

ABSTRACT

The main aim of this project is to provide the MIRTO robot, designed and built by
a team led by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex Uni-
versity London, with autonomous navigation planning capabilities. This objective
is achieved by using simple kinematic models for the pure rotations2 and transla-
tions3 of a differential wheeled robot in combination with a “greedy” version of
the Bug2 algorithm. Moreover, the robot is required to operate by only being able
to gather data from the encoders in the wheels and from the two bumper’s sensors.
The Java code developed for the high-level odometrical functionalities of MIRTO
was implemented in the class MobileRobot.java and run on the Raspberry Pi in-
stalled on the robot’s frame. Furthermore, I wrote a class named RobotTesting.java
in order to test the basic rotational and translational capabilities of the robot and a
class called RobotMission.java to plan a “mission” for the MIRTO robot. Most of
the methods found in the class MobileRobot.java are used in the implementation
of the Java method public void goToGoal(), which is meant to send the robot au-
tonomously from a start to a goal point avoiding any obstacles on the way. In the
Results and Observations section of this paper, I discuss the ten tests that I carried
out on MIRTO in a scenario where the robot had to travel 150 cm and avoid an
approximately rectangular obstacle located approximately 80 cm away from the
start point. When testing my navigation algorithms on MIRTO, I observed that the
differential wheeled robot, on average, ended up 12.8 cm away from the desired
goal location with a standard deviation of 7.6 cm. I also observed an average per-
centage error and associated standard deviation of 8.5% and 5.1%, respectively, for
the final distance from the robot to the goal. However, these values were calculated
using the straight line distance between start and goal points, i.e. 150 centimeters.

2In this paper, pure rotation refers to a rotation about the central axis of the robot. Pure rotations
are never accompanied by translations.

3A pure translation is a straight-line translation.
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Nomenclature

θcur Current orientation of the mobile robot with respect to the positive x-axis
in radians.

θnew New orientation of the mobile robot with respect to the positive x-axis in
radians.

c Translation constant to be determined empirically in the wall-following be-
havior

c f ull Average of the encoders’ counts for a 360 degrees rotation.

crev Encoders’ counts per complete revolution

crot Average of the encoders’ counts for the performed rotation.

ctrans Average of the encoders’ counts for the performed translation.

cwall− f ollowing Number of “wall-following behavior” iterations before transitioning
to “motion to goal behavior”, assuming that the robot has not reached a
“leave” point yet. The “greedy” version of the Bug2 algorithm becomes
complete in the limit where cwall− f ollowing→ ∞

change Rotation in degrees the robot is required to perform.

d Distance measured by the sensor/s of a differential wheeled robot

D0 Distance specified by the programmer in the wall-following behavior

dist Distance in centimeters the robot is required to translate.

distactual Actual distance in centimeters travelled by the robot after a translation.

gain Rotation constant to be determined empirically in the wall-following be-
havior

l Distance between the two wheels of a differential wheeled robot

r Wheels’ radius in centimeters.

rotactual Actual rotation in degrees performed by the robot.

Rotation Rotation of a differential wheeled robot in the wall-following behavior
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speed_ f actor_le f t Motor’s input-speed conversion factor for the left wheel of the
robot.

tclockwise Time in milliseconds required for a clockwise rotation of change degrees.

tcounterclockwise Time in milliseconds required for a counterclockwise rotation of
change degrees.

ttrans Time in milliseconds required to have the robot translate by dist centime-
ters.

Translation Translation of a differential wheeled robot in the wall-following be-
havior

vl Linear speed of a differential wheeled robot

vL Speed of the left wheel of a differential wheeled robot

vR Speed of the right wheel of a differential wheeled robot

vw Angular speed of a differential wheeled robot

xnew New x-coordinate of the mobile robot in centimeters.

xold Old x-coordinate of the mobile robot in centimeters.

ynew New y-coordinate of the mobile robot in centimeters.

yold Old y-coordinate of the mobile robot in centimeters.
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1 Introduction

1.1 Project Aims and Objectives

One the main challenges in mobile robotics has always been to find computation-
ally efficient and accurate ways to determine the position of a robot in an environ-
ment. It is often desirable to send an autonomous robot from a start point S to a
goal point G in order to make it perform a particular task. However, several un-
predictable things might happen on the way from point S to point G and the robot
might lose knowledge of its location in the environment. For example, the actua-
tors of a mobile robot might produce errors that might lead the robot to a location
far away from the desired one. This particular effect gets more and more amplified
as the path to be covered by the robot gets longer and longer. Also, the mobile
robot might come in contact with obstacles and changes in the environment that
are unpredictable. In this case, the robot needs to be able to find an alternative
route to the goal point.

Figure 1: Finding a path from start to goal is one of the main challenges in mobile
robotics [1].

The main aim of this project is to provide the MIRTO robot, designed and built by
a team led by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex Uni-
versity London, with autonomous navigation planning capabilities. This objective
is achieved by using simple kinematic models for the pure rotations and transla-
tions of a differential wheeled robot in combination with a “greedy” version of
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the Bug2 algorithm. In particular, according to the modified Bug2 algorithm, the
robot switches to motion to goal behavior whenever it has spent too long trying to
overcome an obstacle using the standard wall-following behavior. As a result, this
modified version of the Bug2 algorithm can allow the robot to reach the goal rela-
tively fast. The “greedy” Bug2 tends to perform very well in scenarios where the
obstacles are not U-shaped. However, it is important to mention that this Bug2’s
variant is not complete and the robot is not always guaranteed to find a solution if
there is one.
As far as this project goes, the robot is required to operate by only being able to
gather the environment’s data from the encoders in the wheels and from the two
bumper’s sensors. The two encoders, embedded in the wheels, can provide the
robot with precious information on its translations and rotations and are therefore
essential for determining the current location of the robot and for adjusting its tra-
jectory. On the other hand, the two bumper’s sensors allow the robot to detect the
presence of obstacles by bumping into them and progressively avoiding them.
The Java code developed for the high-level odometrical functionalities of MIRTO
was implemented in the class MobileRobot.java and run on the Raspberry Pi in-
stalled on the robot’s frame. Furthermore, I wrote a class named RobotTesting.java
in order to test the basic rotational and translational capabilities of the robot and a
class called RobotMission.java to plan a “mission” for the MIRTO robot. Most of
the methods found in the class MobileRobot.java are used in the implementation
of the Java method public void goToGoal(), which is meant to send the robot au-
tonomously from a start to a goal point avoiding any obstacles on the way. In the
Results and Observations section of this paper, I discuss the ten tests that I carried
out on MIRTO in a scenario where the robot had to travel 150 cm and avoid an
approximately rectangular obstacle located approximately 80 cm away from the
start point. When testing my navigation algorithms on MIRTO, I observed that the
differential wheeled robot, on average, ended up 12.8 cm away from the desired
goal location with a standard deviation of 7.6 cm. I also observed an average per-
centage error and associated standard deviation of 8.5% and 5.1%, respectively, for
the final distance from the robot to the goal. However, these values were calculated
using the straight line distance between start and goal points, i.e. 150 centimeters.
The distance that the robot usually travelled during each experiment was over two
meters mainly due to the wall following behavior when going around the obstacle.
So, the error on the distance travelled by the robot is notably smaller than the one
mentioned above.
Finally, while testing MIRTO, I noticed several sources of random and systematic
errors. In particular, besides translational and rotational errors, there were also hu-
man errors when taking all the required location measurements. Moreover, several
other sources of errors included but were not limited to wheels’ sliding, the battery
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level affecting the operations of the robot, the wheels’ slightly different power re-
quirements, the robot not being perfectly balanced and completely stable and the
floor not being very even and cleaned.
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1.2 Description of the JMirto Robot

The MIddlesex Robotic plaTfOrm (MIRTO) is a differential drive mobile robot
that was developed as part of the european project EU FP7 Project SQUIRREL
by a team of researchers led by Dr. Franco Raimondi at Middlesex University
[2]. Being an open-source and a low-cost robot, MIRTO is ideal for educational
purposes and for experimenting with simple navigation algorithms and odometrical
techniques[2].
The MIRTO robot, shown in Figure 2, is currently equipped with a Raspberry Pi
and an Arduino Uno processor that controls the actuators in the wheels and gets
readings from three infrared sensors and two bumper’s sensors. The Raspberry Pi,
connected to the Arduino through a serial connection, has an SD card to store the
Java programs [2] and runs a Linux operating system which can be controlled from
any laptop thanks to a WiFi USB dongle. Unfortunately, the WiFi connection tends
to be unstable and frequent reconnections to the host are often necessary.

Figure 2: The MIRTO robot developed by a team led by Dr Franco Raimondi
(F.Raimondi@mdx.ac.uk) at Middlesex University London [2]

The purpose of the three infrared sensors, located on the bottom surface of the
robot and facing the floor, is to allow MIRTO to follow high-contrast lines on the
floor. However, over the course of my project, I never made use of these infrared
sensors because I wanted to give MIRTO more flexibility and not constrain it to
follow lines on the ground.
The two bumper’s sensors (see the left picture in Figure 2) are connected to the left
and right part of the bumper installed on the frontal part of MIRTO. As soon as
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the bumper hits an obstacle at least one of those two sensors “clicks” and sends a
voltage to the Arduino Uno microcontroller, letting the robot know that an obstacle
has been detected. Regrettably, the bumper does not cover the entire frontal sec-
tion of the robot. As a result, there are cases, even though not very common, where
MIRTO hits an obstacle that is not detected by the bumper’s sensors. If ignored,
this problem could lead to the robot being stuck or using the obstacle as a fulcrum
to perform a rotation not detected by the encoders. I solved this problem by hav-
ing the algorithm check on whether the encoders have substantially changed their
count, i.e. the robot has moved, over two consecutive translation commands. In
the case where MIRTO has not translated after each of two consecutive translation
commands, my navigation algorithm makes the robot perform an evasion maneu-
ver to get the obstacle out of the way and go back to motion to goal behavior (see
the snippet of code shown below or the public void translate(double dist) method
in the class MobileRobot.java which can be found in Appendix A).

... CODE ...
private int count_trans = 0;
... CODE ...
public void translate(double dist) {
... CODE ...
if (before_translation.distanceTo(after_translation) < 2) {

count_trans++;
if (count_trans == 2) {

rotate(5);
translate(-10);
rotate(30);
translate(30);
count_trans = 0;
if (obstacle_detected()) {

wall_following();
} else {

motion_to_goal();
}

}
if (count_trans > 2) {

rotate(-5);
translate(-10);
rotate(-30);
translate(30);
count_trans = 0;
if (obstacle_detected()) {

wall_following();
} else {
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motion_to_goal();
}

}
}else {

count_trans = 0;
}
... CODE ...

The HUB-ee wheels4 of the MIRTO robot are built with actuators and encoders
inside of them. Moreover, they are completely independent from each other and
can be controlled separately. Even though these wheels have the same technical
specifications, they have slightly different performances and power requirements.
For example, in order to make the mobile robot go straight, it is necessary to send
different voltages to the wheels. In particular, I empirically found out that the left
wheel needs approximately 93% and 95% of the power the right wheel needs in
order to make MIRTO perform a pure translation and a pure rotation, respectively.
Unfortunately, these values are mostly indicative and can vary even by a couple of
units, depending on a lot of factors such us the battery level, the way the wheels
are installed on the robot and the mass distribution of MIRTO. Moreover, the two
HUB-ee wheels have been installed on the MIRTO robot so that, when given a
voltage of the same sign in the method public void setMotors(int s0, int s1) [3], the
wheels operate in opposite directions. For instance, in order to make the mobile
robot perform a pure forward translation, the method public void setMotors(93, -
100) [3] needs to be called. In particular, in order for the pure forward translation
to occur, the ratio between the first and second argument in the method public
void setMotors(int s0, int s1) [3] should be approximately equal to −0.93 with
the first argument being positive and the second argument being negative. Table 1
shows the effects of all of the possible sign combinations in the method public void
setMotors(int s0, int s1) [3].

Input for setMotors Effect on the MIRTO Robot
setMotors(93,-100) Pure Forward Translation
setMotors(-93,100) Pure Backwards Translation
setMotors(-95,-100) Pure Counterclockwise Rotation
setMotors(95,100) Pure Clockwise Rotation

Table 1: The effects of all of the possible sign combinations in the method public
void setMotors(int s0, int s1)[3]

4http://www.creative-robotics.com/About-HUBee-Wheels
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Finally, the Raspberry Pi and an Arduino Uno microcontrollers on the MIRTO
robot are powered by a TECKNET rechargeable 9000 mAh power supply (see
Figure 3), which is enough to operate the robot for several hours [2]. However,
as I have previously mentioned, the battery level of the power supply can have a
significant effect on the operations of the robot. The TECKNET battery pack can
be easily recharged by connecting it to a laptop via USB cable.

Figure 3: The TECKNET rechargeable 9000 mAh power supply used by the
MIRTO robot [2].
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1.3 Background and Literature Survey

As I have already mentioned in the Project Aims and Objectives section of this
report, one the main challenges in mobile robotics has always been to find com-
putationally efficient and accurate ways to determine the position of a robot in an
environment.
Cutting-edge research on Extended Kalman Filter, carried out by Muraca, P. et al.,
has put forward the idea that it is possible to localize a robot even if the measure-
ments coming from its onboard sensors are intermittent [4]. Furthermore, Pinto,
A.M.G. et al. suggested that by combining low-cost infra-red sensors, a map-
matching method and EKF, it becomes possible to accurately localize small mobile
robots [5]. In fact, their paper’s abstract states that “a particle filter based on Parti-
cle Swarm Optimization (PSO) relocates the robot when the map-matching error is
high” [5]. Several other researchers studied Extended Kalman Filters and PSO in
order to propose better solutions to the mobile robots’ localization problem.These
localization methods can be computationally expensive depending on the proces-
sor a specific mobile robot is equipped with. Also, map-matching techniques can
hardly work in a dynamic environment that changes with time. Therefore, some
researchers started turning their attention to computer vision techniques and land-
marks identification as an alternative approach to the localization problem in mo-
bile robotics.
In 2014, J.L. Ortega-García et al. developed a new method for mobile robots to
follow a path “conformed by straight lines, rotation angles and landmarks” [6] (see
Figure 4 below).

Figure 4: Trajectory execution as explained by Ortega-Garcia et al. in “A new
method to follow a path on indoor environments applied for mobile robotics” [6].
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The navigation algorithm researched by J.L. Ortega-García et al. [6] is remarkably
simple and very successful under some very specific assumptions made on the
environment. J.L. Ortega-García et al. worked with a differential drive robot that
was supposed to reach a goal location autonomously. In particular, the mobile
robot was constantly being driven by landmarks which were placed on its path so
that they would always appear right in front of the robot’s camera. In other words,
every landmark was associated to an angle that would lead the mobile robot to
the next landmark and so on. In a more realistic situation, a mobile robot might
not always have landmarks on sight. Furthermore, when the robot approaches a
landmark, it might not have a frontal view of the landmark object. Hence, a mobile
robot should be able to deal with situations where the landmarks appear at different
angles or do not appear at all. Moreover, in case a mobile robot gets lost, it should
be able to determine its location with reasonable accuracy up until a new landmark
is on sight and the robot can correct its position. Therefore, odometry techniques
that use onboard sensors and do not rely on landmarks become very important.
In this paper, I argue that it is possible to localize a differential wheeled robot
with reasonable accuracy relying solely on the bumper’s sensors and encoders in
the wheels. Naturally, longer distances to be travelled by the robot cause smaller
accuracies and greater errors. In the case of a “cheap” robot like MIRTO, it is
possible to localize the robot with a good accuracy for distances on the order of a
few meters, including detours caused by potential obstacles on the way 5.

5MIRTO might be able to determine its position reasonably well even for distances greater than
10 meters. However, it has not been tested in such scenarios
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2 Background Theories

The basic kinematics models for differential wheeled robots are nicely discussed by
Han et al. in “A Precise Curved Motion Planning for a Differential Driving Mobile
Robot” [7] (see Figure 5 below). If we call the velocities of the right and left wheel
vR and vL, respectively, the linear velocity vl for pure translations and the angular
velocity vw for pure rotations will be given by Equations 1 and 2, respectively [7].

Linear Velocity: vl =
vR + vL

2
[7] (1)

Angular Velocity: vw =
2 · (vR− vL)

l
6[7] (2)

Figure 5: Kinematic models for the linear and angular speeds of a differential
wheeled robot (a) [7]. Representation of the robot position on a Cartesian plane (b)
[7]. This figure has been slightly modified and is different from the one provided
by the source.

6l is the distance between the robot’s wheels. In the case of Mirto, l = 11.5 cm.
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We can observe that, if the velocities vR and vL are equal in absolute value and sign,
we have vl 6= 0 and vw = 0. As a result, the robot will perform a pure translation,
which will be forward if the signs of the wheels’ velocities are positive and back-
wards otherwise. On the other hand, if the velocities vR and vL are equal in absolute
value but have opposite signs, we are left with vl = 0 and vw 6= 0. In this case, the
robot would perform a pure rotation, which will be counterclockwise if vR > 0 and
vL < 0. Similarly, the pure rotation will be clockwise if vR < 0 and vL > 0, while
still having vR =−vL. In the event that the two wheels’ velocities are not equal in
absolute value, the robot will perform a more complex curved trajectory that will
be a mix of a rotation and a translation.
The next piece of the puzzle in order to allow a differential wheeled robot to ex-
plore and eventually get from point A to point B in an unknown environment is the
navigation algorithm to be used. Plenty of research has been done on navigation
algorithms using only sensors onboard mobile robots. However, I am going to fo-
cus my attention on a variant of the Bug2 algorithm, presented during a Stanford
lecture [8] (see Algorithm 1, shown below).

Algorithm 1 Bug2 algorithm (variant) [8]
1: procedure BUG2(VARIANT)
2: Repeat:
3: Head toward the goal along the goal-line
4: if the goal is attained then
5: stop
6: if a hit point is reached then
7: follow the obstacle’s boundary (towards the left) until the goal-line

In this variant of the Bug2 algorithm, the robot starts heading for the goal location
until it either reaches it and stops or hits an obstacle. As soon as the obstacle is
detected, a hit point is recorded in the memory of the robot. The “hit”/“leave”
points are the intersections between the start-goal straight line and the boundaries
of all of the obstacles in between start and goal points. Hence, once the robot
has recorded the “hit” point in its memory, it starts following the boundary of
the obstacle until the goal-line 7 is crossed at a “leave” point that has not been
visited yet [8]. Then, the robot starts moving towards the goal along the goal-line
again and repeats the same process for any obstacles on its way until it reaches
its destination. The Bug2 algorithm tends to work very well when applied on
scenarios with relatively small and simple-shaped obstacles (see Figure 6 on the

7Straight line connecting start and goal points
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next page) but performs quite poorly when used in maps with “maze-like” obstacles
or similar.
There are a few techniques in order to allow a mobile robot to follow the boundary
of an obstacle. All of the wall-following algorithms are strongly dependent on
which onboard sensors are available and where exactly are they installed on the
robot.

Figure 6: An example of the Bug2 algorithm [9]

Mobile robots using any kind of distance sensors to detect the obstacles can often8

use a very simple feedback control system to follow the obstacle’s wall and keep
themselves at a specified distance. This “boundary following” behavior can be
achieved using the following model[9]:

Behavior Range-Follow
– Rotation = gain∗ (D0−d)
– Translation = c
End Range-Follow [9]

where D0 and d are the specified distance and the distance measured by the sen-
sor respectively, while gain is a constant proportional to the rotation’s magnitude
which can be determined empirically. If we assume that when the robot faces an

8Assuming that at least one of the mobile robot’s distance sensors can still detect the obstacle
when the robot is parallel to it.
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obstacle it always decides to go left, then D0 > d would cause a positive counter-
clockwise rotation away from the obstacle. On the other hand, D0 < d would cause
a negative clockwise rotation towards from the obstacle. Naturally, D0 = d would
cause no rotation at all and a straight-line translation parallel to the obstacle. In
conclusion, the Behavior Range-Follow alternates between rotations and transla-
tions to keep the robot at a specified distance D0, while following the boundary of
an obstacle.
One of the main problems that I faced in my project was to replicate the boundary-
following behavior described above without having any sort of distance sensors
installed on the robot. The solution that I propose in this paper still alternates be-
tween translations and rotations to keep track of where the obstacle is. However,
the main difference between my idea and the one mentioned above is that my algo-
rithm has the mobile robot regularly bumping into obstacles to gather information
on where they are on the map.
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3 Main Result

3.1 Theoretical Development

The navigation algorithm that I developed over the course of my MSc project
makes use of pure rotations, pure translations and a “greedy” version of the Bug 2
algorithm. In the case of pure translations, I empirically found out motors’ inputs-
speed conversion factors by taking note of the distance travelled by MIRTO in a
specific amount of time and by observing the motors’ inputs associated with every
experiment. In particular, when using the method call setMotors(int s0, int s1) with
(s0,s1) ∈ (93,−100),(−93,100), I found out that MIRTO would travel at speeds
of about 11/12 cm/s. Hence, I estimated the motors’ inputs-speed conversion fac-
tors, as defined in Equation 3, to be the ones reported in Table 2. It is always
important to remember that these factors are rough and can strongly depend on the
type of ground the mobile robot operates on9.

Motor’s Input-Speed Conversion Factor = Motor’s Input/Robot’s Speed (3)

Wheel & Direction Motor’s Input-Speed Conversion Factor
Left Wheel (Forward) 8.1

Right Wheel (Forward) 8.7
Left Wheel (Backwards) 8.3

Right Wheel (Backwards) 8.9

Table 2: The motors’ inputs-speed conversion factors for the two MIRTO’s wheels.

In order to allow MIRTO to translate by dist centimeters, we need to calculate the
time ttrans in milliseconds during which the method setMotors(±93, ∓100) should
operate (see Equation 4).

9MIRTO was tested on laminate flooring.
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ttrans = ROUND10

(
1000∗ |dist|)

93
speed_ f actor_le f t

)
11 (4)

The actual distance, distactual , travelled by the robot after a translation can be cal-
culated using the wheels’ radius r, the average encoders’ counts ctrans and the en-
coders’ counts per complete revolution, crev (see Equation 5). In particular, for the
MIRTO robot we have r = 3 cm and crev = 64.

distactual = 2 ·π · r · ctrans

crev

12 (5)

MIRTO uses the user’s value dist to execute its translations. However, after each
translation, the mobile robot updates its location using distactual as calculated in
Equation 5.
Pure counterclockwise and clockwise rotations of change degrees are performed
using the method call setMotors(±95, ±100)13 with times of execution given by
Equations 6 and 7, respectively. In fact, I empirically found out that MIRTO took
about 3810 and 3640 milliseconds to perform 360 degrees counterclockwise and
clockwise rotations, respectively. It’s worth mentioning that these two values are
mostly indicative and can even vary as much as a few hundreds milliseconds,
depending on several robotic and environmental factors. For example, I tested
MIRTO on laminate flooring and observed variations of full-rotations times up to
100/200 milliseconds.

tcounterclockwise = ROUND

(
3810 · |change|

360

)
14 (6)

10The method Thread.sleep(int time) takes an integer input.
11I calculated two values of t for forward and backwards translation, respectively (i.e. using the

two left wheel factors reported in Table 2).
12In the method public double get_enc_distance() (see Appendix A) there is a minus sign in the

calculation of distactual . The reason for this is that, when MIRTO moves forward, the encoders’
counts are both negative and I adopted a positive sign convention for forward translations.

13Throughout this paper I use the convention of positive counterclockwise rotations and negative
clockwise rotations.

14In Java a conversion from Long to Integer is required (see the method public void rotate(double
change) in Appendix A)
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tclockwise = ROUND

(
3640 · |change|

360

)
15 (7)

Similarly to the case of pure translations, the actual rotation, rotactual , made by
a differential wheeled robot can be calculated using the average of the encoders’
counts for the performed rotation, crot , and the average of the encoders’ counts for
a 360 degrees rotation of MIRTO about its central axis, c f ull .

rotactual =

{
crot
c f ull
·360 if the encoder’s count for the right wheel is negative

− crot
c f ull
·360 otherwise
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(8)

MIRTO uses the user’s value change to execute its rotations. However, after each
rotation, the mobile robot updates its orientation using rotactual as calculated in
Equation 8.
Assuming that the initial position and orientation of MIRTO are known, the robot
will enter the “motion to goal behavior” (see Algorithm 2 on the next page) of the
“greedy” Bug 2 algorithm by first performing a pure rotation towards the goal and
then executing a straight line translation17 until it either hits an obstacle or the final
destination has been reached. If an obstacle gets detected, an “hit” point is saved
on a list and the mobile robot starts its “wall-following behavior” (see Algorithm
3 on page 22). As I have already explained in the “Background Theories” section,
the “hit”/“leave” points are the intersections between the start-goal straight line
and the boundaries of all of the obstacles in between start and goal points. Hence,
once the robot has recorded the “hit” point in its memory, it will start following
the boundary of the obstacle until the goal-line 18 is crossed at a “leave” point that
has not been visited yet [8]. In particular, once in “wall-following behavior” mode,
MIRTO will go backwards by 8 cm, turn 90 degrees counterclockwise and execute

15See footnote number 13.
16The plus or minus sign depends on whether the rotation is counterclockwise, i.e. positive, or

clockwise, i.e. negative. In the case of MIRTO, negative encoders’ values are caused by the wheels
moving forward.

17The straight line translation will be executed by MIRTO in steps of 30 centimeteres and recal-
culating the current location-goal slope after each step.

18Straight line connecting start and goal points
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a 12 cm forward translation. MIRTO will keep performing these three steps until
no obstacle is detected after the last 12 cm forward translation. It will then perform
a 90 degrees clockwise rotation, followed by a 12 centimeters translation, at which
point it will start the above-mentioned three steps again.

Algorithm 2 A variant of the Motion to Goal Behavior that recalculates the slope
between the current location and the goal point at the beginning of every iteration
of the while loop. If an obstacle gets detected, an “hit” point is saved on a list and
the mobile robot starts its Wall-Following Behavior (see Algorithm 3 on the next
page). If the goal has been reached, nothing gets done by the algorithm.

1: procedure MOTION TO GOAL BEHAVIOR

2: if the goal has not been reached then
3: while an obstacle is not detected and the goal has not been reached do
4: get the slope s between the current location and the goal point
5: new_orientation = atan(s)
6: convert the new orientation from radians to degrees
7: pick one of the two solutions given by the function atan, depending

on where the goal point is (see Appendix A: MobileRobot.java).
When using the Java method Math.atan, the two possible solutions
are new_orientation and new_orientation + 180.

8: Rotate to reach new_orientation
9: Translate forward by 30 centimeters

10: if the goal has not been reached then
11: Add the new "hit" point to the list
12: Call the Wall-Following Behavior

The “greedy” version of the “wall-following behavior” will switch to “motion to
goal behavior” either if the method public boolean goal_line_hit(double init_slope)
returns true (see Algorithm 4 on page 24) or if more than 5 iterations of the “wall-
following behavior” have been executed. Similarly to the “motion to goal behav-
ior”, if the goal has been reached, nothing gets done by the algorithm.
The function goal_line_hit(double init_slope) returns true if the mobile robot hits
the goal slope it stored at the beginning of the “wall-following behavior”19 (see
Algorithm 3 on the previous page), i.e. init_slope, at a “hit” point that has not
been visited yet and the function goal_line_hit(double init_slope) has been called

19The function goal_line_hit(double init_slope) returns true if the mobile robot hits a slope within
5% of the goal slope it stored at the beginning of the “wall-following behavior”
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at least 2 times20. It also returns true if init_slope is greater than cwall− f ollowing = 5,
if the absolute difference of the x-coordinates of the current location and goal point
is less than 5 and if the function goal_line_hit(double init_slope) has been called
at least 2 times.It returns false otherwise.

.

Algorithm 3 A “greedy” version of the Wall-Following Behavior that switches
to Motion to Goal Behavior (see Algorithm 2 on the previous page) either if the
method public boolean goal_line_hit(double init_slope) returns true (see
Algorithm 4 on the next page) or if more than 5 iterations of the Wall-Following
Behavior have been executed. If the goal has been reached, nothing gets done by
the algorithm.

1: procedure WALL-FOLLOWING BEHAVIOR

2: if the goal has not been reached then
3: set the iterations count for the Wall-Following Behavior, i.e.

count_wall, to 0
4: get the slope between the current location and the goal point, i.e.

init_slope
5: while !goal_line_hit(init_slope) and count_wall <= 5 and

the goal has not ben reached do
6: while an obstacle is detected by the robot and the goal has not been

reached do
7: translate backwards by 8 centimeters
8: Rotate 90 degrees counterclockwise
9: translate forward by 12 centimeters

10: end while
11: Rotate 90 degrees clockwise
12: Translate forward by 12 centimeters
13: count_wall = count_wall + 1
14: if count_wall > 5 then
15: Translate backwards by 10 centimeters
16: if the goal has not been reached then
17: Call the Motion to Goal Behavior
18: end while
19: if the goal has not been reached then
20: Call the Motion to Goal Behavior

20This is done in order to avoid false detections of new “hit”/“leave” points caused by the robot
remaining in a similar location
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Algorithm 4 Returns true if the mobile robot hits the goal slope it stored at the
beginning of the Wall-Following Behavior (see Algorithm 3 on the previous page),
i.e. init_slope, at a “hit” point that has not been visited yet and the function
goal_line_hit(double init_slope) has been called at least 2 times. It also
returns true if init_slope is greater than 5, if the absolute difference of the x-
coordinates of the current location and goal point is less than 5 and if the function
goal_line_hit(double init_slope) has been called at least 2 times.It returns
false otherwise.

1: procedure GOAL LINE "HIT"
2: get the slope between the current location and the goal point, i.e.

location_slope
3: set a boolean flag to false
4: if the function goal_line_hit(double init_slope) has been called at

least 2 times, i.e. count_glh >= 2 then
5: if 100*Math.abs(init_slope - location_slope )/init_slope < 5)

and the "hit" point has not been visited yet, i.e. it is not in the list
then

6: flag = true
7: end if
8: if init_slope > 5 and the absolute difference between the x-

coordinates of the current location and goal point is less than 5 then
9: flag = true

10: end if
11: end if
12: if flag == true then
13: count_glh = 0
14: return true
15: else
16: count_glh = count_glh +1
17: return false

The “motion to goal” and “wall-following” behaviors will keep taking turns until
there are no obstacles between the robot and the goal, at which point the mobile
robot will mantain its “motion to goal behavior” until the destination has been
reached. The main advantage of this “greedy” version of the Bug2 algorithm is
that it allows a mobile robot equipped with encoders and bumper’s sensors to reach
the goal point very quickly in scenarios with simply-shaped and small obstacles.
On the other hand, this version of the Bug2 algorithm is not complete and there is
no guarantee it will find a solution if there exists one. In particular, the “greedy”
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version of the Bug2 algorithm becomes complete in the limit where the mobile
robot spends more and more time in the wall-following behavior or as much time
as needed to reach a “leave” point. In other words, this “greedy” version of the
Bug2 algorithm becomes complete in the limit where cwall− f ollowing→ ∞.
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3.2 Analysis and Design

The design of the goToGoal() function, which allows the robot to reach a goal
point autonomously, is composed of four main blocks (see the flow diagram in
Figure 721): translate(double dist), rotate(double change), motion_to_goal() and
wall_following().

Figure 7: Flow diagram for the public void goToGoal() method, which al-
lows the JMirto robot to reach a goal location autonomously. This algorithm is
a “greedy” version of the Bug2 algorithm. As a result, it is not always guaran-
teed to find a solution if there is one. However, it allows the robot to reach a goal
location relatively quickly in scenarios where the obstacles are small and not U-
shaped. It is worth mentioning that before every transition to the public void
wall_following() method a “hit” point gets stored in a list.

21The flow diagram in Figure 7 was made using gliffy (https://www.gliffy.com).
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When the method goToGoal() two things can happen. If an obstacle is detected,
the wall-following behavior gets called, ie. wall_following(). Otherwise, the robot
enters its motion to goal behavior, i.e. motion_to_goal(). The function obsta-
cle_detected() (see Appendix A) simply return true if one or both of the bumper’s
sensors have detected an obstacle. As I have already explained in the Description
of the JMirto Robot section, MIRTO’s bumper does not cover the entire front part
of the robot. As a result, I wrote an evasive maneuver at the end of the trans-
late(double dist) method to allow MIRTO to get the obstacle out of the way and
start its motion to goal behavior again (see the translate(double dist) method in
Appendix A).
The motion to goal behavior and wall-following behavior operate as described in
the Theoretical Development section of this paper and as depicted in the flow dia-
gram shown in Figure 7. Both of these two “higher-level” behaviors make use of
the translate(double dist) and rotate(double change) methods.
The translate(double dist) function operates as described in Theoretical Develop-
ment section and updates the location of the robot using Equations 9 and 10 (see
below).

xnew = xold +distactual · cos(θcur) (9)

ynew = yold +distactual · sin(θcur) (10)

In Equations 9 and 10, (xold ,yold) and (xnew,ynew) represent the old and new lo-
cation of the mobile robot22, respectively. Moreover, θcur represents the current
orientation of the robot in radians. One interesting detail of the method trans-
late(double dist) is that, when the robot is less than 50 centimeters away from the
goal, the amounts of the forward translations commands get overridden in such a
way that the robot starts making smaller and smaller translations as it gets closer
and closer to its destination (see the translate(double dist) in Appendix A).
The rotate(double change) also behaves as described in Theoretical Development
section and updates the orientation of the robot using Equation 11 (see below).

22The location of the robot is expressed in centimeters throughout the rest of my paper.
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θnew =

{
(θcur + rotactual)%360 θnew ≥ 0
360+(θcur + rotactual)%360 θnew < 0

2324 (11)

While testing the robot, I observed a systematic error in the rotations of about 1
degree counterclockwise. That is the reason why I subtract 1 degree from θnew

towards the end of the rotate(double change) function.
Finally, it is important to observe from the flow diagram portrayed in Figure 7, that
whenever the goal is reached, i.e. goal_reached(), the mobile robot stops and the
methods goToGoal(), motion_to_goal() and wall_following() do not do anything
and eventually stop executing as the robot comes to a stop. In particular, even the
translate(double dist) and rotate(double change) functions have been coded not to
do anything in case the robot has reached its destination.
The method goal_reached() (see Appendix A) returns true if MIRTO is within 7
cm of the goal, in which case it prints the current location and orientation of the
robot as well as the cumulative distance traveled25. It is definitely possible to allow
MIRTO to get closer to the goal by lowering the goal_reached() threshold by 2/3
centimeters. In fact, the reason why I set the goal threshold to 7 cm is because I
wanted MIRTO to terminate its navigation algorithm faster and not start wandering
around the goal for a while before coming to a halt.

23The symbol % stands for the computer science “mod” operator.
24If θnew < 0 we need to add 360 to θnew in order to keep the orientation of the robot positive. In

fact, that is the convention that I use throughout this paper.
25In the calculation of the cumulative distance traveled by the robot, the backwards translations

are considered as “positive” translations.
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3.3 Implementation and Experimental Work

In order to implement the theory behind my ideas, I developed a Java class named
MobileRobot.java meant to give high-level commands to MIRTO (see Appendix
A). Moreover, I wrote a routine named RobotTesting.java containing a main unit to
test the basic translational and rotational functionalities of the MobileRobot class
(see Appendix C). In order to develop the class MobileRobot.java I used a few
snippets of code and methods provided by the class, JMirtoRobot.java, developed
by a team led by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex Uni-
versity London [3]. The class JMirtoRobot provides the user with lower-level com-
mands to control the robot. For example, the function public void setMotors(int s0,
int s1) sets the voltages of the two DC motors that are responsible for actuating the
wheels. As a result, in the higher-level class MobileRobot.java I also take care of
the conversion factor between DC motors’ inputs and wheels’ speeds in centime-
ters per second, as explained in the Theoretical Development section of my work.
In order to send high-level commands to Mirto, the user will simply need to create
a new MobileRobot object and take advantage of the functions implemented within
the class. All of the methods and classes implemented in MobileRobot.java are
shown in the comments below (see Appendix A for the implementation of each
method or class).

/* File: MobileRobot.java
* Date: June 2015
* King’s College London -- Dept. of Informatics -- MSc in Robotics
* Author: Claudio S. De Mutiis (claudio.de_mutiis@kcl.ac.uk)
* Purpose: Provide the MIRTO robot, developed by a team led by Dr
* Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London, with high-level odometrical functionalities.
*
* IMPORTANT NOTES:
*
* 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
* EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
* CARD):
* (i) MobileRobot.java in /csd2222
* (ii) RobotMission.java in /csd2222
* (iii) RobotTesting.java in /csd2222
* (iv) The following files and folders should also be placed
* in /csd2222: java-asip.jar, jssc, libs, META-INF and
* uk.
* (v) The modified version of the file JMirtoRobot.java (see
* below) should be placed in
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* /csd2222/uk/ac/mdx/cs/asip
*
* Source: https://github.com/fraimondi/java-asip
*
* 2) The code in JMirtoRobot.java has been modified by Claudio S.
* De Mutiis (claudio.de_mutiis@kcl.ac.uk) in August 2015.
* Claudio S. De Mutiis added the method public void resetCount(),
* which resets both of the encoders’ counts.
*
* public void resetCount() {
* e0.resetCount();
* e1.resetCount();
* }
*
* TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
* and RobotTesting.java WITH THE OLD VERSION OF JMirtoRobot.java
* WILL RESULT IN A COMPILATION ERROR !!!
*
* The modified version of JMirtoRobot.java is needed to make
* everything compile and run correctly !!
*
* ADDITIONAL CREDITS:
* - The class JMirtoRobot.java was developed by a team led by Dr
* Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London. When using the functionalities of the class
* JMirtoRobot.java, in several occasions, I used or slightly
* modified snippets of code taken from the file JMirtoRobot.java.
* I copied and pasted the main method for testing the class
* JMirtoRobot below in the comments (after the description for
* the class Point).
* - In order to be able to work, the class MobileRobot.java makes
* use of methods and classes developed by a team led by Dr
* Franco Raimondi at Middlesex University (see the folders lib
* and src and the files build.xml, README.md located in the
* folder java-asip-master).
* Source: https://github.com/fraimondi/java-asip
*/

/* Useful Math Functions:
* 1) Math.toDegrees(...) --> converts an angle from rad to deg
* 2) Math.toRadians(...) --> converts an angle from deg to rad
*/

/*************************** MobileRobot ***************************
* public MobileRobot() --> Constructor with no arguments
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* public MobileRobot(Point start_new) --> Constructor with the
* start point coordinates in cm
* public MobileRobot(Point start_new, double orientation_new) -->
* Constructor with start point coordinates in cm
* and orientation in degrees
* public MobileRobot(Point start_new, Point goal_new) -->
* Constructor with start and goal points
* coordinates in cm
* public MobileRobot(Point start_new, Point goal_new, double
* orientation_new) --> Constructor with start and
* goal coordinates in cm and orientation in degrees
* public Point getLocation() --> Get the current location of the
* mobile robot (x,y) -- cm
* public void setStart(Point start_new) --> Set the start point (x,y)
* -- cm
* public Point getStart() --> Get the start point (x,y) -- cm
* public void setGoal(Point goal_new) --> Set the goal point (x,y)
* -- cm
* public Point getGoal() --> Get the goal point (x,y) -- cm
* public void setOrientation(double orientation_new) --> Set the
* orientation of the robot -- degrees
* public double getOrientation() --> Get the current orientation of
* the robot with respect to the positive x-axis --
* degrees
* public double getStartOrientation() --> Get the initial orientation
* of the robot with respect to the positive x-axis
* -- degrees
* public void setSpeed(double speed_left, double speed_right) --> Set
* the speeds of the right and left wheel -- cm/s
* public Speed getSpeed() --> Get the speeds of the right and left
* wheel -- cm/s
* public double getLinSpeed() --> Get the linear speed of the mobile
* robot -- cm/s
* public double getAngSpeed() --> Get the angular speed of the mobile
* robot -- radians/sec
* public void translate(double dist) --> Make the mobile robot
* translate by "dist" cm
* public void rotate(double change) --> Make the mobile robot rotate
* by "change" degrees
* public void stop() --> Make the mobile robot stop
* public void reset(Point goal_new) --> Reset the goal point coordinates
* in cm
* public void reset(Point goal_new, double start_orientation_new) -->
* Reset the goal point in cm and orientation of the
* robot in degrees
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* public void goToGoal() --> Make the mobile robot move to its goal point
* public void goToGoal(Point goal_new) --> Make the mobile robot move to
* the new Goal Point
* public void motion_to_goal() --> A variant of the Motion to Goal Behavior
* that recalculates the slope between the current location
* and the goal point at the beginning of every iteration
* of the while loop. If an obstacle gets detected, an "hit"
* point is saved on a list and the mobile robot starts its
* Wall-Following Behavior. If the goal has been reached,
* nothing gets done by the algorithm.
* public void wall_following() --> A "greedy" version of the Wall-Following
* Behavior that switches to Motion to Goal Behavior either
* if the method public boolean goal_line_hit(double
* init_slope) returns true or if more than 5 iterations of
* the Wall-Following Behavior have been executed.If the
* goal has been reached, nothing gets done by the
* algorithm.
* public boolean obstacle_detected() --> Returns true if an obstacle has
* been detected by the mobile robot’s bumpers
* public void avoid_obstacle(char ch) --> Determines which bumper detected
* the obstacle and makes the robot act appropriately (’l’
* and ’r’ for counterclockwise and clockwise rotation,
* respectively). This code has been written in a way to a
* allow further development for the programmer who wants
* the robot to perform different actions depending on which
* bumpers’ sensors are activated.
* public boolean goal_line_hit(double init_slope) --> Returns true if the
* mobile robot hits the goal slope it stored at the
* beginning of the Wall-Following Behavior, i.e. init_slope,
* at a "hit" point that has not been visited yet and the
* function goal_line_hit(double init_slope) has been called
* at least 2 times. It also returns true if init_slope is
* greater than 5, if the absolute difference between the
* x-coordinates of the current location and goal point is
* less than 5 and if the function
* goal_line_hit(double init_slope) has been called at least
* 2 times.It returns false otherwise.
* public boolean goal_reached() --> Returns true if the robot is within 7 cm of
* its current goal point
* public double getGoalSlope() --> Get the slope of the line connecting the
* start point and the goal point
* public double getLocationSlope() --> Get the slope of the line conecting the
* goal point and the current location of the robot
* public boolean hp_visited() --> Returns true if the mobile robot crosses one
* of the "hit" points previously visited
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* public double get_enc_distance() --> Get the "encoder" distance traveled by
* the mobile robot
* public double get_cum_distance() --> Get the cumulative distance traveled by
* the mobile robot
* public void print_location(String current) --> Print the current location of
* the robot
* *****************************************************************************
*
* *************** Speed (part of the class MobileRobot.java) *******************
* public Speed() --> Constructor for zero Speed:(0,0)
* public Speed(double vr_new, double vl_new) --> Constructor for Speed:
* (speed_right_wheel, speed_left_wheel)
* public void set_vr(double vr_new) --> Set the speed of the right wheel
* public double get_vr() --> Get the speed of the right wheel
* public void set_vl(double vl_new) --> Set the speed of the left wheel
* public double get_vl() --> Get the speed of the left wheel
* *******************************************************************************
*
* ************************************ Point **********************************
* public Point() --> Constructor for the origin point:(0,0)
* public Point(double x_new, double y_new) --> Constructor for a Point:(x,y)
* public void setX(double x_new) --> Set the x-coordinate of the point
* public double getX() --> Get the x-coordinate of the point
* public void setY(double y_new) --> Set the y-coordinate of the point
* public double getY() --> Get the y-coordinate of the point
* public double distanceTo(Point point) --> Get the distance of THIS point to
* another point
* ******************************************************************************
*
* The main method for testing the class JMirtoRobot.java, was written by a team led
* by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University London
* (see Appendix A: MobileRobot.java)
*/

It is important to mention that I slightly modified the class JMirtoRobot.java by
adding the method public void resetCount(), which resets the counts of both of the
encoders embedded in MIRTO’s wheels.
As we can observe from the comments of the MobileRobot.java class reported
above, I created a Point class to handle the “blueprint” of a Point in the Cartesian
plane. In particular, after creating a Point, the user can edit or retrieve the coor-
dinates of the point by using methods implemented within the class. Moreover,
the class Point provides the programmer with the very useful public double dis-
tanceTo(Point point) function, which calculates the distance between two points in
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the Cartesian plane.
Similarly to the class Point, the class Speed provides the user functionalities to
set and get the speeds of the MIRTO robot. At this point, I would like to high-
light the fact that some parts of the class MobileRobot were designed in order to
allow further developments of the code. For example, methods such as public dou-
ble get_vr() and public double get_vl() to get the wheels’ speeds or public double
getLinSpeed() and public double getAngSpeed() to retrieve MIRTO’s current lin-
ear and angular speeds would be a lot more useful if there was a user graphical
interface and multithreading was used. Furthermore, I wrote a few methods in
MobileRobot with the idea of allowing other programmers to further improve my
navigation algorithm. For example, the function public void avoid_obstacle(char
ch) can be easily modified to distinguish the cases of obstacle’s avoidance depend-
ing on which bumper’s sensors detected the obstacle, i.e. left sensor, right sensor or
both of them. Also, MIRTO can be commanded to avoid the obstacle by going left,
right or turn around by 180 degrees and go away from the obstacle. However, I de-
cided not to use all of these functionalities of the public void avoid_obstacle(char
ch) method in my project because I wanted to avoid unnecessary complications
and keep my algorithms as simple as possible. Moreover, I believe that the way
the bumper’s sensors are installed on MIRTO is not good enough to allow the pro-
grammer to safely identify the orientation of the robot with respect to the obstacle.
Before testing the basic rotational and translational functionalities of MIRTO with
the program RobotTesting.java (see below or Appendix C), I carried out a long
calibration process. In fact, I had to “tune” several parameters including motors’
inputs-speed conversion factors (see the Theoretical Development section), the av-
erage of the encoder’s counts (i.e. c f ull) and the times taken for 360 degrees clock-
wise and counterclockwise rotations. I also had to determine the best input values
in the method setMotors(int s0, int s1) for translations and rotations.

/* File: RobotTesting.java
* Date: August 2015
* King’s College London -- Dept. of Informatics -- MSc in Robotics
* Author: Claudio S. De Mutiis (claudio.de_mutiis@kcl.ac.uk)
* Purpose: Test the basic rotational and translational capabilities
* of the MIRTO robot, developed by a team led by Dr Franco
* Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London
*
* IMPORTANT NOTES:
*
* 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
* EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
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* CARD):
* (i) MobileRobot.java in /csd2222
* (ii) RobotMission.java in /csd2222
* (iii) RobotTesting.java in /csd2222
* (iv) The following files and folders should also be placed
* in /csd2222: java-asip.jar, jssc, libs, META-INF and
* uk.
* (v) The modified version of the file JMirtoRobot.java (see
* below) should be placed in
* /csd2222/uk/ac/mdx/cs/asip
*
* Source: https://github.com/fraimondi/java-asip
*
* 2) The code in JMirtoRobot.java has been modified by Claudio S.
* De Mutiis (claudio.de_mutiis@kcl.ac.uk) in August 2015.
* Claudio S. De Mutiis added the method public void resetCount(),
* which resets both of the encoders’ counts.
*
* public void resetCount() {
* e0.resetCount();
* e1.resetCount();
* }
*
* TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
* and RobotTesting.java WITH THE OLD VERSION OF JMirtoRobot.java
* WILL RESULT IN A COMPILATION ERROR !!!
*
* The modified version of JMirtoRobot.java is needed to make
* everything compile and run correctly !!
*
* ADDITIONAL CREDITS:
* - The class JMirtoRobot.java was developed by a team led by Dr
* Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London.
* - In order to be able to work, the class RobotTesting.java makes
* use of methods and classes developed by a team led by Dr
* Franco Raimondi at Middlesex University (see the folders lib
* and src and the files build.xml, README.md located in the
* folder java-asip-master).
* Source: https://github.com/fraimondi/java-asip
*/

/* Useful Math Functions:
* 1) Math.toDegrees(...) --> converts an angle from rad to deg
* 2) Math.toRadians(...) --> converts an angle from deg to rad
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*/
/********************************************************************
/* VERY USEFUL FUNCTIONS OF MobileRobot.java (see the comments
* of MobileRobot.java file to learn about other available functions)
* ******************************************************************
* public void translate(double dist) --> Make the mobile robot
* translate by "dist" cm
* public void rotate(double change) --> Make the mobile robot rotate
* by "change" degrees
* public void stop() --> Make the mobile robot stop
* public void reset(Point goal_new) --> Reset the goal point in cm
* public void reset(Point goal_new, double start_orientation_new)
* --> Reset the goal point in cm and orientation
* in degrees
* public void goToGoal() --> Make the mobile robot move to its goal
* point
* public void goToGoal(Point goal_new) --> Make the mobile robot move
* to the new goal point
* ********************************************************************
*
*/

public class RobotTesting {
public static void main(String[] args) {

// create a start point at the origin (0,0) --> current
// location of the robot
Point start = new Point();
// create a goal point at (50, 50)
Point goal = new Point(50,50);
// specify the current orientation of the robot
double orientation = 180;
// create the robot object
MobileRobot robot = new MobileRobot(start, goal, orientation);
robot.translate(20);
robot.translate(-20);
robot.translate(20);
robot.rotate(-180);
robot.rotate(90);

}
}

Once MIRTO had been calibrated and successfully tested using the RobotTesting
routine, I could start “tuning” the parameters related to the public void goToGoal()
method, which allows the robot to reach a destination on a Cartesian plane au-
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tonomously. For instance, I had to fiddle with the translation steps’ sizes in the
public void motion_to_goal() and public void wall_following() methods. More-
over, I also took care of several “thresholds” such us the minimum distance from
the goal in order for the goal to be “reached”, the maximum error of the slopes
matching in the public boolean goal_line_hit(double init_slope) function and the
maximum “error distance” to compare and possibly match MIRTO’s current lo-
cation with one of the previously visited “hit” points in the list “visited_points”
(see the method public boolean hp_visited() in Appendix A). I also had “tune” the
maximum number of iterations before the motion following behavior would switch
to motion to goal behavior, i.e. cwall− f ollowing. It is very interesting to notice that
the parameter cwall− f ollowing can be tuned by taking into account the environment
the mobile robot is going to operate in. In particular, the sizes of the perimeters
of the largest obstacles in the environment are the defining environmental charac-
teristics that should be considered when deciding on the value of the cwall− f ollowing
parameter.
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3.4 Results and Observations

In order to observe the performance of the public void goToGoal() method, meant
to send the robot autonomously from a start to a goal point avoiding any obstacles
on the way, I planned a simple “mission” for the MIRTO robot (see the RobotMis-
sion.java class below or in Appendix B).

/* File: RobotMission.java
* Date: June 2015
* King’s College London -- Dept. of Informatics -- MSc in Robotics
* Author: Claudio S. De Mutiis (claudio.de_mutiis@kcl.ac.uk)
* Purpose: Plan a mission for the MIRTO robot, developed by a team led
* by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London.
*
* IMPORTANT NOTES:
*
* 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
* EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
* CARD):
* (i) MobileRobot.java in /csd2222
* (ii) RobotMission.java in /csd2222
* (iii) RobotTesting.java in /csd2222
* (iv) The following files and folders should also be placed
* in /csd2222: java-asip.jar, jssc, libs, META-INF and
* uk.
* (v) The modified version of the file JMirtoRobot.java (see
* below) should be placed in
* /csd2222/uk/ac/mdx/cs/asip
*
* Source: https://github.com/fraimondi/java-asip
*
* 2) The code in JMirtoRobot.java has been modified by Claudio S.
* De Mutiis (claudio.de_mutiis@kcl.ac.uk) in August 2015.
* Claudio S. De Mutiis added the method public void resetCount(),
* which resets both of the encoders’ counts.
*
* public void resetCount() {
* e0.resetCount();
* e1.resetCount();
* }
*
* TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
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* and RobotTesting.java WITH THE OLD VERSION OF JMirtoRobot.java
* WILL RESULT IN A COMPILATION ERROR !!!
*
* The modified version of JMirtoRobot.java is needed to make
* everything compile and run correctly !!
*
* ADDITIONAL CREDITS:
* - The class JMirtoRobot.java was developed by a team led by Dr
* Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
* London.
* - In order to be able to work, the class RobotMission.java makes
* use of methods and classes developed by a team led by Dr
* Franco Raimondi at Middlesex University (see the folders lib
* and src and the files build.xml, README.md located in the
* folder java-asip-master).
* Source: https://github.com/fraimondi/java-asip
*/

/* Useful Math Functions:
* 1) Math.toDegrees(...) --> converts an angle from rad to deg
* 2) Math.toRadians(...) --> converts an angle from deg to rad
*/
/********************************************************************
/* VERY USEFUL FUNCTIONS OF MobileRobot.java (see the comments
* of MobileRobot.java file to learn about other available functions)
* ******************************************************************
* public void translate(double dist) --> Make the mobile robot
* translate by "dist" cm
* public void rotate(double change) --> Make the mobile robot rotate
* by "change" degrees
* public void stop() --> Make the mobile robot stop
* public void reset(Point goal_new) --> Reset the goal point in cm
* public void reset(Point goal_new, double start_orientation_new)
* --> Reset the goal point in cm and orientation
* in degrees
* public void goToGoal() --> Make the mobile robot move to its goal
* point
* public void goToGoal(Point goal_new) --> Make the mobile robot move
* to the new goal point
* *******************************************************************
*
*/

public class RobotMission {
public static void main(String[] args) {
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// create a start point at the origin (0,0) --> current
// location of the robot
Point start = new Point();
// create a goal point at (0, 150)
Point goal = new Point(0,150);
// specify the current orientation of the robot
double orientation = 180;
// create the robot object
MobileRobot robot = new MobileRobot(start, goal, orientation);
// send the robot to its goal location
robot.goToGoal();

}
}

I carried out ten tests in a scenario where MIRTO had to travel 150 cm and avoid
a roughly rectangular obstacle located approximately 80 cm away from the start
point. In particular, I set the start and goal points at the origin (i.e. (0,0)) and at
(0,150), respectively. In order to make things “harder”, I gave MIRTO an initial
orientation of 180 degrees. As a result, during his motion to goal behavior, the
robot had to rotate 90 degrees clockwise before heading north towards his destina-
tion (see Figure 8 on the next page).
When testing my navigation algorithms on MIRTO, I observed that the differential
wheeled robot, on average, ended up 12.8 cm away from the desired goal location
with a standard deviation of 7.6 cm (see Table 3 on page 42). I also observed an
average percentage error and associated standard deviation of 8.5% and 5.1%, re-
spectively, for the final distance from the robot to the goal. However, these values
were calculated using the straight line distance between start and goal points, i.e.
150 centimeters. The distance that the robot usually travelled during each experi-
ment was over two meters mainly due to the wall following behavior when going
around the obstacle. So, the error on the distance travelled by the robot is notably
smaller than the one reported in the Table 3. Moreover, the reason why the final
y-coordinate in the robot’s memory always came short of the goal’s coordinate is
that the goal threshold was set to 7 cm and MIRTO always approached its destina-
tion from the south.
Generally speaking, at the time of this paper, it is hard to get a very accurate and
constant performance for the high-level odometrical function goToGoal(). How-
ever, good results can be achieved if the “calibration” of MIRTO is done correctly.
I would like to highlight the fact that translations are much easier to calibrate than
rotations are. In fact, individual rotations can quite easily be off by 1− 2 degrees
and this type of error is quite random and unpredictable. Furthermore, even small
rotation errors can strongly influence the performance of the public void goTo-
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Goal() method, especially when the MIRTO robot is still close to its start point.
Also, even though, over the course of MIRTO’s journey to the goal, the rotations
errors could balance themselves out, it is usually the case that a systematic error
in one direction of rotation prevails. This could be due to the fact that, according
to the design of the public void wall_following() method, the MIRTO robot always
chooses to avoid an obstacle by going left. In other words, an “asymmetry” has
been introduced into the navigation algorithm.

Figure 8: The MIRTO robot can reach the goal by alternating between motion to
goal and wall-following behaviors.

While testing the MIRTO robot, I noticed several sources of random and systematic
errors. In particular, besides translational and rotational errors, there were also
human errors when taking all the required location measurements (see Figure 9 on
the next page). Moreover, several other sources of errors included but were not
limited to wheels’ sliding, the battery level affecting the operations of the robot,
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Start: (0,0) – cm Real Robot’s Memory DTG (cm) DTG ErrorGoal: (0,150) – cm x (cm) y (cm) x (cm) y (cm)
Test 1 7.5 145.0 -1.8 143.5 9.0 6.0 %
Test 2 -11.5 142.0 -2.8 144.7 14.0 9.3 %
Test 3 0.0 151.5 -3.2 144.3 1.5 1.0 %
Test 4 -2.0 144.0 -3.1 144.6 6.3 4.2 %
Test 5 -16.0 141.5 -1.2 144.8 18.1 12.1 %
Test 6 7.5 139.5 -5.7 146.6 12.9 8.6 %
Test 7 6.5 143.5 -1.2 143.9 9.2 6.1 %
Test 8 9.0 140.5 -2.8 144.8 13.1 8.7 %
Test 9 -30.0 149.5 -2.3 143.9 30.0 20.0 %

Test 10 12.5 145.0 -2.6 144.5 13.5 9.0 %
Average -1.7 144.2 -2.7 144.6 12.8 8.5 %

Std. Deviation 13.6 3.8 1.3 0.8 7.6 5.1 %

Table 3: Results of ten tests of the high-level odometrical function goToGoal()
using the origin (0,0) and (0,150) as the start and goal points. “DTG” stands for
the actual distance between the robot and the goal once the navigation algorithm
has finished executing. In the ten tests reported in the table above, the average error
and associated standard deviation for the final distance between the robot and the
goal turned out to be 8.5% and 5.1%, respectively. However, these values were
calculated using the straight line distance between start and goal points, i.e. 150
centimeters. The distance that the robot usually travelled during each experiment
was over two meters mainly due to the wall following behavior when going around
the obstacle. So, the error on the distance travelled by the robot is notably smaller
than the one reported in the Table 3. The final average absolute distance from
the goal and associated standard deviation were found to be 12.8 cm and 7.6 cm.
However, these values are strongly influenced by one or two outliers among the
data points.

the wheels’ slightly different power requirements, the robot not being perfectly
balanced and completely stable and the floor not being very even and cleaned.
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Figure 9: Before measuring the final location of the robot I would take a reference
point to act as the center of MIRTO and then gently remove the robot while putting
a five pence coin on the ground. Then, I would quite easily measure the location of
the coin. I believe the error of this measuring process to be at most 1-2 centimeters.
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4 Conclusion and Future Developments

In spite of the satisfactory results reported in the previous section of this report (see
Table 3), there is plenty of room for improvements and further developments of my
work. In particular, besides making MIRTO more balanced and stable, potential
improvements include the use of wheels with more similar power requirements26

and better performance. Moreover, in order to make any navigation algorithm on
MIRTO more accurate and consistent, future work should also focus on trying
to develop a system to remove part of the random error generated by individual
rotations. In fact, in most cases, that is the main cause behind MIRTO heading off
course and “believing” to be in a different position on the Cartesian plane in its
memory. One method to regularly correct the robot’s position in the environment
is definitely the use of landmarks like the ones shown in Figure 10 below [6].
In particular, it would be very interesting to integrate the research carried out by
Ortega-Garcia et al. [6] with the work discussed in this paper. In fact, the robot’s
memory could store a map of the landmarks present in the environment so that
MIRTO could correct its own position every time one of the known landmarks was
on sight. Naturally, in order to be able to do all of this, MIRTO would need to be
equipped with a camera and a computer vision algorithm to identify the landmarks.

Figure 10: Examples of landmarks used by Ortega-Garcia et al. [6].

Future improvements of my code include but are not limited to the creation of
a graphical user interface and the use of multithreading in order to greatly en-
hance the user’s experience and scientists’s efficiency in conducting their research.
Furthermore, a rough map of the “visited” obstacles in the environment could be
created by using all of the Cartesian points where MIRTO detected an obstacle
by bumping against it. In particular, an interpolation algorithm should be used in

26In the case of pure translations and rotations, the absolute value of the ratio of the two arguments
in the function setMotors(int s0, int s1) should be as close to 1 as possible in order for MIRTO to
improve its overall performance.
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order to better define the continuous boundaries of the obstacles. Knowing the lo-
cation of the “visited” obstacles in the environment would allow MIRTO to reach
a solution faster (at least in some cases) and would also greatly increase the robot’s
chances of finding a solution, if such solution exists.
As mentioned in the “Implementation and Experimental Work” section of this pa-
per, the method public void avoid_obstacle(char ch) could be easily modified to
distinguish the cases of obstacle’s avoidance depending on which bumper’s sen-
sors detected the obstacle, i.e. left sensor, right sensor or both of them. Moreover,
I wrote my code so that MIRTO can be commanded to avoid the obstacle by going
left, right or turn around by 180 degrees and go away from the obstacle. Hence,
especially once better bumper’s sensors have been installed on MIRTO27, there is
plenty of potential to improve the wall_following behavior of the robot.
Finally, even though there is still much to do in local navigation and odometry, the
current research carried out in these fields looks very promising. MIRTO is a quite
“cheap” robotic platform which can not only be used for educational purposes [2]
but also for future research in mobile robotics.

27As already mentioned in the Implementation and Experimental Work section of my work, I
believe that the way the bumper’s sensors are currently installed on MIRTO is not good enough to
allow the programmer to safely identify the orientation of the robot with respect to the obstacle.
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6 Appendices

6.1 Appendix A: MobileRobot.java

/∗ File : MobileRobot.java
∗ Date: June 2015
∗ King’s College London −− Dept. of Informatics −−MSc in Robotics
∗ Author: Claudio S. De Mutiis ( claudio .de_mutiis@kcl.ac.uk)
∗ Purpose: Provide the MIRTO robot, developed by a team led by Dr
∗ Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
∗ London, with high−level odometrical functionalities .
∗
∗ IMPORTANT NOTES:
∗
∗ 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
∗ EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
∗ CARD):
∗ ( i ) MobileRobot.java in /csd2222
∗ ( ii ) RobotMission.java in /csd2222
∗ ( iii ) RobotTesting . java in /csd2222
∗ ( iv ) The following files and folders should also be placed
∗ in /csd2222: java−asip. jar , jssc , libs , META−INF and
∗ uk.
∗ (v) The modified version of the file JMirtoRobot. java (see
∗ below) should be placed in
∗ /csd2222/uk/ac/mdx/cs/asip
∗
∗ Source: https :// github .com/fraimondi/ java−asip
∗
∗ 2) The code in JMirtoRobot. java has been modified by Claudio S.
∗ De Mutiis ( claudio .de_mutiis@kcl.ac.uk) in August 2015.
∗ Claudio S. De Mutiis added the method public void resetCount (),
∗ which resets both of the encoders’ counts .
∗
∗ public void resetCount () {
∗ e0. resetCount ();
∗ e1. resetCount ();
∗ }
∗
∗ TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
∗ and RobotTesting . java WITH THE OLD VERSION OF JMirtoRobot.java
∗ WILL RESULT IN A COMPILATION ERROR !!!
∗
∗ The modified version of JMirtoRobot. java is needed to make
∗ everything compile and run correctly !!
∗
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∗ ADDITIONAL CREDITS:
∗ − The class JMirtoRobot. java was developed by a team led by Dr
∗ Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
∗ London. When using the functionalities of the class
∗ JMirtoRobot. java , in several occasions , I used or slightly
∗ modified snippets of code taken from the file JMirtoRobot. java .
∗ I copied and pasted the main method for testing the class
∗ JMirtoRobot below in the comments (after the description for
∗ the class Point ).
∗ − In order to be able to work, the class MobileRobot.java makes
∗ use of methods and classes developed by a team led by Dr
∗ Franco Raimondi at Middlesex University (see the folders lib
∗ and src and the files build .xml, README.md located in the
∗ folder java−asip−master).
∗ Source: https :// github .com/fraimondi/ java−asip
∗/

/∗ Useful Math Functions:
∗ 1) Math.toDegrees (...) −−> converts an angle from rad to deg
∗ 2) Math.toRadians (...) −−> converts an angle from deg to rad
∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MobileRobot ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ public MobileRobot() −−> Constructor with no arguments
∗ public MobileRobot(Point start_new ) −−> Constructor with the
∗ start point coordinates in cm
∗ public MobileRobot(Point start_new , double orientation_new ) −−>
∗ Constructor with start point coordinates in cm
∗ and orientation in degrees
∗ public MobileRobot(Point start_new , Point goal_new) −−>
∗ Constructor with start and goal points
∗ coordinates in cm
∗ public MobileRobot(Point start_new , Point goal_new, double
∗ orientation_new ) −−> Constructor with start and
∗ goal coordinates in cm and orientation in degrees
∗ public Point getLocation () −−> Get the current location of the
∗ mobile robot (x,y) −− cm
∗ public void setStart ( Point start_new ) −−> Set the start point (x,y)
∗ −− cm
∗ public Point getStart () −−> Get the start point (x,y) −− cm
∗ public void setGoal( Point goal_new) −−> Set the goal point (x,y)
∗ −− cm
∗ public Point getGoal () −−> Get the goal point (x,y) −− cm
∗ public void setOrientation (double orientation_new ) −−> Set the
∗ orientation of the robot −− degrees
∗ public double getOrientation () −−> Get the current orientation of
∗ the robot with respect to the positive x−axis −−
∗ degrees
∗ public double getStartOrientation () −−> Get the initial orientation
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∗ of the robot with respect to the positive x−axis
∗ −− degrees
∗ public void setSpeed(double speed_left , double speed_right ) −−> Set
∗ the speeds of the right and left wheel −− cm/s
∗ public Speed getSpeed() −−> Get the speeds of the right and left
∗ wheel −− cm/s
∗ public double getLinSpeed() −−> Get the linear speed of the mobile
∗ robot −− cm/s
∗ public double getAngSpeed() −−> Get the angular speed of the mobile
∗ robot −− radians/sec
∗ public void translate (double dist ) −−> Make the mobile robot
∗ translate by " dist " cm
∗ public void rotate (double change) −−> Make the mobile robot rotate
∗ by "change" degrees
∗ public void stop () −−> Make the mobile robot stop
∗ public void reset ( Point goal_new) −−> Reset the goal point coordinates
∗ in cm
∗ public void reset ( Point goal_new, double start_orientation_new ) −−>
∗ Reset the goal point in cm and orientation of the
∗ robot in degrees
∗ public void goToGoal() −−> Make the mobile robot move to its goal point
∗ public void goToGoal(Point goal_new) −−> Make the mobile robot move to
∗ the new Goal Point
∗ public void motion_to_goal() −−> A variant of the Motion to Goal Behavior
∗ that recalculates the slope between the current location
∗ and the goal point at the beginning of every iteration
∗ of the while loop . If an obstacle gets detected , an " hit "
∗ point is saved on a list and the mobile robot starts its
∗ Wall−Following Behavior. If the goal has been reached ,
∗ nothing gets done by the algorithm .
∗ public void wall_following () −−> A "greedy" version of the Wall−Following
∗ Behavior that switches to Motion to Goal Behavior either
∗ if the method public boolean goal_line_hit (double
∗ init_slope ) returns true or if more than 5 iterations of
∗ the Wall−Following Behavior have been executed . If the
∗ goal has been reached , nothing gets done by the
∗ algorithm .
∗ public boolean obstacle_detected () −−> Returns true if an obstacle has
∗ been detected by the mobile robot ’s bumpers
∗ public void avoid_obstacle (char ch) −−> Determines which bumper detected
∗ the obstacle and makes the robot act appropriately (’ l ’
∗ and ’ r ’ for counterclockwise and clockwise rotation ,
∗ respectively ). This code has been written in a way to a
∗ allow further development for the programmer who wants
∗ the robot to perform different actions depending on which
∗ bumpers’ sensors are activated .
∗ public boolean goal_line_hit (double init_slope ) −−> Returns true if the
∗ mobile robot hits the goal slope it stored at the
∗ beginning of the Wall−Following Behavior, i .e . init_slope ,
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∗ at a " hit " point that has not been visited yet and the
∗ function goal_line_hit (double init_slope ) has been called
∗ at least 2 times . It also returns true if init_slope is
∗ greater than 5, if the absolute difference between the
∗ x−coordinates of the current location and goal point is
∗ less than 5 and if the function
∗ goal_line_hit (double init_slope ) has been called at least
∗ 2 times . It returns false otherwise .
∗ public boolean goal_reached () −−> Returns true if the robot is within 7 cm of
∗ its current goal point
∗ public double getGoalSlope() −−> Get the slope of the line connecting the
∗ start point and the goal point
∗ public double getLocationSlope () −−> Get the slope of the line conecting the
∗ goal point and the current location of the robot
∗ public boolean hp_visited () −−> Returns true if the mobile robot crosses one
∗ of the " hit " points previously visited
∗ public double get_enc_distance () −−> Get the "encoder" distance traveled by
∗ the mobile robot
∗ public double get_cum_distance() −−> Get the cumulative distance traveled by
∗ the mobile robot
∗ public void print_location ( String current ) −−> Print the current location of
∗ the robot
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Speed (part of the class MobileRobot.java) ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ public Speed() −−> Constructor for zero Speed :(0,0)
∗ public Speed(double vr_new, double vl_new) −−> Constructor for Speed:
∗ (speed_right_wheel , speed_left_wheel )
∗ public void set_vr (double vr_new) −−> Set the speed of the right wheel
∗ public double get_vr () −−> Get the speed of the right wheel
∗ public void set_vl (double vl_new) −−> Set the speed of the left wheel
∗ public double get_vl () −−> Get the speed of the left wheel
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Point ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ public Point () −−> Constructor for the origin point :(0,0)
∗ public Point (double x_new, double y_new) −−> Constructor for a Point :( x,y)
∗ public void setX(double x_new) −−> Set the x−coordinate of the point
∗ public double getX() −−> Get the x−coordinate of the point
∗ public void setY(double y_new) −−> Set the y−coordinate of the point
∗ public double getY() −−> Get the y−coordinate of the point
∗ public double distanceTo ( Point point ) −−> Get the distance of THIS point to
∗ another point
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ The main method for testing the class JMirtoRobot. java , was written by a team led
∗ by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University London
∗
∗
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∗ // A main method for testing
∗ public static void main(String [] args ) {
∗
∗ // JMirtoRobot robot = new JMirtoRobot("/dev/ tty . usbserial −A903VH1D");
∗ JMirtoRobot robot = new JMirtoRobot("/dev/ttyAMA0");
∗
∗
∗ try {
∗ Thread. sleep (500);
∗ robot . setup ();
∗ Thread. sleep (500);
∗ while ( true ) {
∗ System.out . println ("IR: "+robot .getIR(0) + ","+ robot .getIR (1)+",
∗ "+robot .getIR (2));
∗ System.out . println ("Encoders: "+robot .getCount(0) + ","+ robot .getCount (1));
∗ System.out . println ("Bumpers: "+robot. isPressed (0) + ","+ robot . isPressed (1));
∗ System.out . println (" Setting motors to 50,50");
∗ robot . setMotors (100, 0);
∗ Thread. sleep (1500);
∗ System.out . println ("Stopping motors ");
∗ robot .stopMotors ();
∗ Thread. sleep (500);
∗ System.out . println (" Setting motors to 100,100");
∗ robot . setMotors(0,−250);
∗ Thread. sleep (1500);
∗ System.out . println ("Stopping motors ");
∗ robot .stopMotors ();
∗ Thread. sleep (500);
∗ }
∗ /∗ System.out . println (" Setting motors to 50,50");
∗ robot . setMotors (50, 50);
∗ Thread. sleep (3000);
∗ System.out . println ("Stopping motors ");
∗ robot .stopMotors ();
∗ Thread. sleep (500);
∗ System.out . println (" Setting motors to 80,−80");
∗ robot . setMotors (80, −80);
∗ Thread. sleep (3000);
∗ System.out . println ("Stopping motors ");
∗ robot .stopMotors ();
∗ Thread. sleep (3000);
∗ System.out . println (" Setting motors to −100,100");
∗ robot . setMotors(−100, 100);
∗ Thread. sleep (3000);
∗ System.out . println ("Stopping motors ");
∗ robot .stopMotors ();
∗ System.out . println ("All done, see you soon !");
∗ ∗/
/∗
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∗ } catch ( InterruptedException e) {
∗ e. printStackTrace ();
∗ }
∗
∗ }
∗
∗/

import uk.ac .mdx.cs.asip .JMirtoRobot;
import uk.ac .mdx.cs.asip . services .BumpService;
import uk.ac .mdx.cs.asip . services .EncoderService;
import uk.ac .mdx.cs.asip . services . IRService ;
import uk.ac .mdx.cs.asip . services .MotorService;
import java . util .∗;

public class MobileRobot {
// Distance between the two robot ’s wheels in cm
private static final double l = 11.5;
// Forward Motor−Speed Conversion Factor for laminate flooring
// ( left wheel)
private static final double speed_factor_left_f = 8.1;
// Forward Motor−Speed Conversion Factor for laminate flooring
// ( right wheel)
private static final double speed_factor_right_f = 8.7;
// Backward Motor−Speed Conversion Factor for laminate flooring
// ( left wheel)
private static final double speed_factor_left_b = 8.3;
// Backward Motor−Speed Conversion Factor for laminate flooring
// ( right wheel)
private static final double speed_factor_right_b = 8.9;
// Encoder count for a full 360 degrees rotation
private static final double enc_full = 125;
// Start Point (x,y) −− cm
private Point start = new Point ();
// Goal Point (x,y) −− cm
private Point goal = new Point ();
// Current location of the mobile robot (x,y) −− cm
private Point location = new Point ();
// Speed ( right wheel, left wheel) −− cm/s
private Speed speed = new Speed();
// Initial orientation of the robot with respect to the x−axis
// −− degrees
private double start_orientation ;
// Current orientation of the robot with respect to the x−axis
// −− degrees
private double orientation ;
// Linear Speed of the robot −− cm/s
private double linear_speed ;
// Angular Speed of the robot −− radians/sec
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private double angSpeed;
// Robot ( control motors and sensors )
public JMirtoRobot robot = new JMirtoRobot("/dev/ttyAMA0");
// Set of the 2D Cartesian " hit " points visited by the mobile
// robot
private Set<Point> visited_points = new HashSet<Point>();
// Number of iterations of the wall−following behaviour
private int count_wall ;
// Cumulative distance traveled by the mobile robot
private double cum_distance;
// Slope from start to goal point
private double goal_slope ;
// Number of times the function goal_line_hit () gets called
private int count_glh = 0;
// Counter for the number of translations when the robot
// gets stuck on an obstacle
private int count_trans = 0;
// Counter for the number of times the function
// goal_reached () gets called and returns true
private int count_goal_reached = 0;

// Constructor with no arguments
public MobileRobot() {

try {
location .setX (0);
location .setY (0);
goal .setX (0);
goal .setY(150);
robot . setup ();
robot . resetCount ();
Thread. sleep (500);
stop ();
start .setX (0);
start .setY (0);
start_orientation = 90;
orientation = 90;
linear_speed = 0;
angSpeed = 0;
cum_distance = 0;
visited_points = new HashSet<Point>();
print_location (" initial " );

System.out . println ();
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Constructor with the start point coordinates in cm
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public MobileRobot(Point start_new ) {
try {
location .setX( start_new .getX ());
location .setY( start_new .getY ());
goal .setX (0);
goal .setY(150);
robot . setup ();
robot . resetCount ();
Thread. sleep (500);
stop ();
start .setX( start_new .getX ());
start .setY( start_new .getY ());
start_orientation = 90;
orientation = 90;
linear_speed = 0;
angSpeed = 0;
cum_distance = 0;
visited_points = new HashSet<Point>();
print_location (" initial " );

System.out . println ();
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Constructor with start point coordinates in cm and orientation
// in degrees
public MobileRobot(Point start_new , double start_orientation_new ) {

try {
location .setX( start_new .getX ());
location .setY( start_new .getY ());
goal .setX (0);
goal .setY(150);
robot . setup ();
robot . resetCount ();
Thread. sleep (500);
stop ();
start .setX( start_new .getX ());
start .setY( start_new .getY ());
start_orientation = start_orientation_new ;
orientation = start_orientation_new ;
linear_speed = 0;
angSpeed = 0;
cum_distance = 0;
visited_points = new HashSet<Point>();
print_location (" initial " );

System.out . println ();
} catch ( InterruptedException e) {
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e. printStackTrace ();
}

}

// Constructor with start and goal coordinates in cm
public MobileRobot(Point start_new , Point goal_new) {

try {
location .setX( start_new .getX ());
location .setY( start_new .getY ());
goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());
robot . setup ();
robot . resetCount ();
Thread. sleep (500);
stop ();
start .setX( start_new .getX ());
start .setY( start_new .getY ());
start_orientation = 90;
orientation = 90;
linear_speed = 0;
angSpeed = 0;
cum_distance = 0;
visited_points = new HashSet<Point>();
print_location (" initial " );

System.out . println ();
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Constructor with start and goal coordinates in cm
// and orientation in degrees
public MobileRobot(Point start_new , Point goal_new, double start_orientation_new ) {

try {
location .setX( start_new .getX ());
location .setY( start_new .getY ());
goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());
robot . setup ();
robot . resetCount ();
Thread. sleep (500);
stop ();
start .setX( start_new .getX ());
start .setY( start_new .getY ());
start_orientation = start_orientation_new ;
orientation = start_orientation_new ;
linear_speed = 0;
angSpeed = 0;
cum_distance = 0;
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visited_points = new HashSet<Point>();
print_location (" initial " );

System.out . println ();
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Get the current location of the mobile robot (x,y) −− cm
public Point getLocation () {

return location ;
}

// Set the start point (x,y) −− cm
public void setStart ( Point start_new ) {

start .setX( start_new .getX ());
start .setY( start_new .getY ());
location .setX( start_new .getX ());
location .setY( start_new .getY ());

}

// Get the start point (x,y) −− cm
public Point getStart () {

return start ;
}

// Set the goal point (x,y) −− cm
public void setGoal( Point goal_new) {

goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());

}

// Get the goal point (x,y) −− cm
public Point getGoal () {

return goal ;
}

// Set the orientation of the robot −− degrees
public void setOrientation (double orientation_new ) {

double rotation ;
if (Math.abs( orientation_new − orientation ) > 180) {

if ( orientation_new > orientation ) {
rotation = −1∗(360 − orientation_new + orientation );

}else {
rotation = 360 − orientation + orientation_new ;

}
}else {

rotation = orientation_new − orientation ;
}
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rotate ( rotation );
}

// Get the current orientation of the robot with respect to the
// positive x−axis −− degrees
public double getOrientation () {

return orientation ;
}

// Get the initial orientation of the robot with respect to the
// positive x−axis −− degrees
public double getStartOrientation () {

return start_orientation ;
}

// Set the speeds of the right and left wheel −− cm/s
public void setSpeed(double speed_left , double speed_right ) {

if (! goal_reached ()) {
System.out . println (" Setting motors to (" + speed_left + " , " + speed_right + ")" );
System.out . println ();

}
speed. set_vr ( speed_right );
speed. set_vl ( speed_left );
Long speed_l = Math.round( speed_left );
int speed_left_new = Integer .valueOf(speed_l . intValue ());
Long speed_r = Math.round(speed_right );
int speed_right_new = Integer .valueOf(speed_r . intValue ());
if (!(( Math.abs( speed_left )) > 50 || (Math.abs( speed_right ) > 50))) {

if ( speed_left >= 0) {
speed_l = Math.round( speed_left ∗ speed_factor_left_f );

}else {
speed_l = Math.round( speed_left ∗ speed_factor_left_b );

}
speed_left_new = Integer .valueOf(speed_l . intValue ());
if ( speed_right < 0) {

speed_r = Math.round(speed_right∗ speed_factor_right_f );
}else {

speed_r = Math.round(speed_right∗ speed_factor_right_b );
}
speed_right_new = Integer .valueOf(speed_r . intValue ());

}
robot . setMotors(speed_left_new, speed_right_new);

}

// Get the speeds of the right and left wheel −− cm/s
public Speed getSpeed() {

return speed;
}
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// Get the linear speed of the mobile robot −− cm/s
public double getLinSpeed() {

return (speed. get_vr () + speed. get_vl ())/2;
}

// Get the angular speed of the mobile robot −− radians/sec
public double getAngSpeed() {

return 2∗(speed. get_vr () − speed.get_vl ())/ l ;
}

// Make the mobile robot translate by " dist " cm. If the robot has
// hit an obstacle not detected by the bumpers’ sensors , perform an
// evasion manoeuvre.
public void translate (double dist ) {

try {
if (! goal_reached ()) {

if ( getLocation (). distanceTo (getGoal ()) < 50 && dist > 0) {
dist = 20;
if ( getLocation (). distanceTo (getGoal ()) < 30) {

dist = 10;
if ( getLocation (). distanceTo (getGoal ()) < 20) {

dist = 5;
if ( getLocation (). distanceTo (getGoal ()) < 10) {

dist = 2;
if ( getLocation (). distanceTo (getGoal ()) < 6) {

dist = 1;
}

}
}

}
}
Point before_translation = new Point( location .getX (), location .getY ());
int time = 0;
if ( dist >= 0) {

Long time_l = Math.round(1000∗Math.abs(dist )/(93/ speed_factor_left_f ));
time = Integer .valueOf( time_l . intValue ());
setSpeed (93, −100);

}else {
Long time_l = Math.round(1000∗Math.abs(dist )/(93/ speed_factor_left_b ));
time = Integer .valueOf( time_l . intValue ());
setSpeed(−93, 100);

}
Thread. sleep (time );
stop ();
dist = get_enc_distance ();
cum_distance = cum_distance + Math.abs( dist ); // Use wheels’ encoders
System.out . print (" Translation of " + dist + " cm executed! " );
System.out . println ("(" + time + " ms)");
location .setX( location .getX() + dist ∗Math.cos(Math.toRadians( orientation )));

58



location .setY( location .getY() + dist ∗Math.sin(Math.toRadians( orientation )));
print_location ("new");

System.out . print ("The current location−goal slope is " );
System.out . println ( getLocationSlope ());
System.out . println ();
Point after_translation = new Point( location .getX (), location .getY ());
if ( before_translation . distanceTo ( after_translation ) < 2) {

count_trans ++;
if ( count_trans == 2) {

rotate (5);
translate (−10);
rotate (30);
translate (30);
count_trans = 0;
if ( obstacle_detected ()) {

wall_following ();
} else {

motion_to_goal ();
}

}
if ( count_trans > 2) {

rotate (−5);
translate (−10);
rotate (−30);
translate (30);
count_trans = 0;
if ( obstacle_detected ()) {

wall_following ();
} else {

motion_to_goal ();
}

}
}else {

count_trans = 0;
}

}
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Make the mobile robot rotate by "change" degrees . Try to correct
// a systematic error by subtracting 1 degree to the final
// orientation of the robot .
public void rotate (double change) {

try {
if (! goal_reached ()) {

Long time_l ;
int time;
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if (change >= 0) {
time_l = Math.round(3810∗(Math.abs(change)/360));
time = Integer .valueOf( time_l . intValue ());
setSpeed(−95, −100);

}else {
time_l = Math.round(3640∗(Math.abs(change)/360));
time = Integer .valueOf( time_l . intValue ());
setSpeed (95, 100);

}
Thread. sleep (time );
stop ();
change = get_enc_rotation ();
System.out . print ("Rotation of " + change);
System.out . println (" degrees executed! (" + time + " ms)");
orientation = ( orientation + change)%360;
if ( orientation < 0) {

orientation = orientation + 360;
}
orientation = orientation − 1;
print_location ("new");

System.out . print ("The current location−goal slope is " );
System.out . println ( getLocationSlope ());
System.out . println ();

}
} catch ( InterruptedException e) {

e. printStackTrace ();
}

}

// Make the mobile robot stop
public void stop () {

try {
if (! goal_reached ()) {

System.out . println ("Stopping motors" );
System.out . println ();

}
robot .stopMotors ();
Thread. sleep (500);
speed. set_vr (0);
speed. set_vl (0);

} catch ( InterruptedException e) {
e. printStackTrace ();

}
}

// Reset the goal point coordinates in cm
public void reset ( Point goal_new) {

robot . resetCount ();
stop ();
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start .setX( location .getX ());
start .setY( location .getY ());
goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());
cum_distance = 0;
print_location (" initial " );

System.out . println ();
visited_points . clear ();

}

// Reset the goal point coordinates in cm and orientation in
// degrees
public void reset ( Point goal_new, double start_orientation_new ) {

robot . resetCount ();
stop ();
start .setX( location .getX ());
start .setY( location .getY ());
goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());

start_orientation = start_orientation_new ;
orientation = start_orientation_new ;

cum_distance = 0;
print_location (" initial " );

System.out . println ();
visited_points . clear ();

}

// Make the mobile robot move to its Goal Point
public void goToGoal() {

try {
Thread. sleep (700);
if (! goal_reached ()) {

goal_slope = getLocationSlope ();
System.out . println ("The current location−goal slope is " + goal_slope );
if (! obstacle_detected ()) {

motion_to_goal ();
}else {

Point temp_location = getLocation ();
visited_points .add(temp_location );
wall_following ();

}
}

} catch ( InterruptedException e) {
e. printStackTrace ();

}
}

// Make the mobile robot move to the new Goal Point
public void goToGoal(Point goal_new) {
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try {
Thread. sleep (700);
goal .setX(goal_new.getX ());
goal .setY(goal_new.getY ());
Thread. sleep (700);
if (! goal_reached ()) {

goal_slope = getLocationSlope ();
System.out . println ("The current location−goal slope is " + goal_slope );
if (! obstacle_detected ()) {

motion_to_goal ();
}else {

Point temp_location = getLocation ();
visited_points .add(temp_location );
wall_following ();

}
}

} catch ( InterruptedException e) {
e. printStackTrace ();

}
}

// A variant of the Motion to Goal Behavior that recalculates the slope between
// the current location and the goal point at the beginning of every iteration
// of the while loop . If an obstacle gets detected , an " hit " point is saved on a
// list and the mobile robot starts its Wall−Following Behavior. If the goal has
// been reached , nothing gets done by the algorithm .
public void motion_to_goal() {

if (! goal_reached ()) {
System.out . println ();
System.out . println ();
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Motion to Goal Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Motion to Goal Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Motion to Goal Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ();
System.out . println ();
while (! obstacle_detected () && !goal_reached()) {

goal_slope = getLocationSlope ();
double orientation_new = Math.atan( goal_slope );
orientation_new = Math.toDegrees( orientation_new );
double orientation_1 = orientation_new ;
double orientation_2 = orientation_new + 180;
if ( orientation_1 > 0) {

if (goal .getY() > location .getY()) {
orientation_new = orientation_1 ;

}else {
orientation_new = orientation_2 ;

}
} else if ( orientation_1 < 0) {

if (goal .getY() > location .getY()) {
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orientation_new = orientation_2 ;
}else {

orientation_new = orientation_1 ;
}

} else {
if (goal .getX() > location .getX()) {

orientation_new = orientation_1 ;
}else {

orientation_new = orientation_2 ;
}

}
if ( orientation_new < 0) {

orientation_new = 360 + orientation_new ;
}
setOrientation ( orientation_new );
translate (30);

}
if (! goal_reached ()) {

Point temp_location = getLocation ();
visited_points .add(temp_location );
wall_following ();

}
}

}

// A "greedy" version of the Wall−Following Behavior that switches to Motion to
// Goal Behavior either if the method public boolean goal_line_hit (double init_slope )
// returns true or if more than 5 iterations of the Wall−Following Behavior have
// been executed . If the goal has been reached , nothing gets done by the algorithm .
public void wall_following () {

if (! goal_reached ()) {
System.out . println ();
System.out . println ();
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Wall−Following Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Wall−Following Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ("∗∗∗∗∗∗∗∗∗∗ Wall−Following Behavior ... ∗∗∗∗∗∗∗∗∗∗");
System.out . println ();
System.out . println ();
count_wall = 0;
double init_slope = getLocationSlope ();
while ((! goal_line_hit ( init_slope ) && count_wall <= 5) && !goal_reached()) {

while ( obstacle_detected () && !goal_reached()) {
// make the robot be approximately parallel to the
// obstacle
avoid_obstacle ( ’ l ’ );
translate (12);

}
// rotate 90 degrees clockwise
if ( orientation − 90 < 0) {
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setOrientation ( orientation − 90 + 360);
}else {

setOrientation ( orientation − 90);
}
translate (12);

count_wall++;
if (count_wall > 5) {

translate (−10);
if (! goal_reached ()) {

System.out . println ();
System.out . print ("∗∗∗∗∗∗ Leaving Wall−Following Behavior ... " );
System.out . println (" trying to get to the goal ! ∗∗∗∗∗∗");
System.out . println ();
motion_to_goal ();

}
}

}
if (! goal_reached ()) {

System.out . println ();
System.out . print ("∗∗∗∗∗∗ Leaving Wall−Following Behavior ... " );
System.out . println (" trying to get to the goal ! ∗∗∗∗∗∗");
System.out . println ();
motion_to_goal ();

}
}

}

// Returns true if an obstacle has been detected by the mobile
// robot ’s sensors
public boolean obstacle_detected () {

if ( robot . isPressed (0) || robot . isPressed (1)) {
if (! goal_reached ()) {

System.out . println ();
System.out . println ("∗∗∗∗∗∗ An obstacle has been hit !!! ∗∗∗∗∗∗");
System.out . println ();

}
return true ;

}else {
return false ;

}
}

// Determines which bumper detected the obstacle and makes the robot
// act appropriately (’ l ’ and ’ r ’ for counterclockwise and clockwise
// rotation , respectively ). This code has been written in a way to a
// allow further development for the programmer who wants the robot
// to perform different actions depending on which bumpers’ sensors
// are activated .
public void avoid_obstacle (char ch) {
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double angle ;
double trans = −8;
if (ch == ’ l ’ ) {

angle = 90;
}else if (ch == ’r ’ ) {

angle = −90;
}else {

angle = 180;
}
if ( obstacle_detected ()) {

if ( robot . isPressed (0) && robot. isPressed (1)) {
translate ( trans );
if ( orientation + angle < 0) {

setOrientation ( orientation + angle + 360);
}else {

setOrientation (( orientation + angle)%360);
}

}else if ( robot . isPressed (0) && (!robot. isPressed (1))) {
translate ( trans );
if ( orientation − angle < 0) {

setOrientation ( orientation + angle + 360);
}else {

setOrientation (( orientation + angle)%360);
}

}else {
translate ( trans );
if ( orientation − angle < 0) {

setOrientation ( orientation + angle + 360);
}else {

setOrientation (( orientation + angle)%360);
}

}
}

}

// Returns true if the mobile robot hits the goal slope it stored at
// the beginning of the Wall−Following Behavior, i .e . init_slope , at
// a " hit " point that has not been visited yet and the function
// goal_line_hit (double init_slope ) has been called at least 2 times .
// It also returns true if init_slope is greater than 5, if the
// absolute difference between the x−coordinates of the current
// location and goal point is less than 5 and if the function
// goal_line_hit (double init_slope ) has been called at least 2 times .
// It returns false otherwise .
public boolean goal_line_hit (double init_slope ) {

double location_slope = getLocationSlope ();
boolean flag = false ;
if (count_glh >= 2) {

if ((100∗Math.abs( init_slope − location_slope )/ init_slope < 5) && !hp_visited ()) {
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flag = true ;
}
if (( init_slope > 5) && (Math.abs(location .getX() − goal.getX()) < 5)) {

flag = true ;
}

}

if ( flag == true ) {
if (! goal_reached ()) {

System.out . println ();
System.out . println ("∗∗∗∗∗∗ The start−goal line has been hit !! ∗∗∗∗∗∗");
System.out . println ();

}
count_glh = 0;
return true ;

}else {
count_glh++;
return false ;

}

}

// Returns true if the robot is within 7 cm of its current goal
// point
public boolean goal_reached () {

if ( getLocation (). distanceTo (getGoal ()) < 7) {
if (count_goal_reached == 0) {

print_location ("new");
System.out . println (" ∗∗∗∗∗∗ The robot has reached its goal !!! ∗∗∗∗∗∗");
System.out . println ("The total distance traveled is " + cum_distance);
System.out . println ();

}
count_goal_reached++;
return true ;

} else {
return false ;

}
}

// Get the slope of the line connecting the start point and the goal
// point
public double getGoalSlope() {

double slope ;
if (goal .getX() == start .getX()) {

slope = 999999999;
}else {

slope = (goal .getY() − start .getY ())/( goal .getX() − start .getX ());
}
return slope ;

66



}

// Get the slope of the line conecting the goal point and the
// current location of the robot
public double getLocationSlope () {

double slope_location ;
if ( location .getX() == goal .getX()) {

slope_location = 999999999;
}else {

slope_location = ( location .getY() − goal.getY ())/( location .getX() − goal.getX ());
}
return slope_location ;

}

// Returns true if the mobile robot crosses one of the " hit " points
// previously visited
public boolean hp_visited () {

Point temp_location = getLocation ();
boolean result = false ;
for ( Point p : visited_points ){

if ( temp_location . distanceTo (p) < 5) {
result = true ;

}
}
return result ;

}

// Get the "encoder" distance traveled by the mobile robot
public double get_enc_distance () {

int d1 = robot .getCount (0);
int d2 = robot .getCount (1);
double enc_dist = (d1 + d2 )/2;
enc_dist = −6∗Math.PI∗enc_dist/64;
robot . resetCount ();
return enc_dist ;

}

// Get the "encoder" rotation made by the robot
public double get_enc_rotation () {

int d1 = robot .getCount (0);
int d2 = robot .getCount (1);
double enc_rot = (Math.abs(d1) + Math.abs(d2 ))/2;
enc_rot = ( enc_rot / enc_full )∗360;
if (d2 < 0) {

enc_rot = − enc_rot ;
}
robot . resetCount ();
return enc_rot ;

}
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// Get the cumulative distance traveled by the mobile robot
public double get_cum_distance() {

return cum_distance;
}

// Print the current location of the robot
public void print_location ( String current ) {

if ( current . equals (" initial " )) {
System.out . print ("The initial " );

}else if ( current . equals (" current " )) {
System.out . print ("The current " );

}else {
System.out . print ("The new ");

}
System.out . println (" location and orientation of the robot are" );
System.out . print ("(" + location .getX() + " cm," + location .getY() + " cm) " );
System.out . println ("and " + orientation + " degrees , respectively . " );

}

// This class manages the speeds of the right and left wheels of
// the robot
private class Speed {

private double vr ; // speed of the right wheel
private double vl ; // speed of the left wheel

// Constructor for zero Speed :(0,0)
public Speed() {

vr = 0;
vl = 0;

}

// Constructor for Speed:(speed_right_wheel , speed_left_wheel )
public Speed(double vr_new, double vl_new) {

vr = vr_new;
vl = vl_new;

}

// Set the speed of the right wheel
public void set_vr (double vr_new) {

vr = vr_new;
}

// Get the speed of the right wheel
public double get_vr () {

return vr ;
}

// Set the speed of the left wheel
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public void set_vl (double vl_new) {
vl = vl_new;

}

// Get the speed of the left wheel
public double get_vl () {

return vl ;
}

}

}

// A point in the cartesian plane P:(x,y)
class Point {

private double x;
private double y;

// Constructor for the origin point :(0,0)
public Point () {

x = 0;
y = 0;

}

// Constructor for a Point :( x,y)
public Point (double x_new, double y_new) {

x = x_new;
y = y_new;

}

// Set the x−coordinate of the point
public void setX(double x_new) {

x = x_new;
}

// Get the x−coordinate of the point
public double getX() {

return x;
}

// Set the y−coordinate of the point
public void setY(double y_new) {

y = y_new;
}

// Get the y−coordinate of the point
public double getY() {

return y;
}
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// Get the distance of THIS point to another point
public double distanceTo ( Point point ) {

double delta_x = point .getX() − x;
double delta_y = point .getY() − y;
double distance = Math.sqrt (Math.pow(delta_x,2) + Math.pow(delta_y ,2));
return distance ;

}
}
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6.2 Appendix B: RobotMission.java

/∗ File : RobotMission.java
∗ Date: June 2015
∗ King’s College London −− Dept. of Informatics −−MSc in Robotics
∗ Author: Claudio S. De Mutiis ( claudio .de_mutiis@kcl.ac.uk)
∗ Purpose: Plan a mission for the MIRTO robot, developed by a team led
∗ by Dr Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
∗ London.
∗
∗ IMPORTANT NOTES:
∗
∗ 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
∗ EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
∗ CARD):
∗ ( i ) MobileRobot.java in /csd2222
∗ ( ii ) RobotMission.java in /csd2222
∗ ( iii ) RobotTesting . java in /csd2222
∗ ( iv ) The following files and folders should also be placed
∗ in /csd2222: java−asip. jar , jssc , libs , META−INF and
∗ uk.
∗ (v) The modified version of the file JMirtoRobot. java (see
∗ below) should be placed in
∗ /csd2222/uk/ac/mdx/cs/asip
∗
∗ Source: https :// github .com/fraimondi/ java−asip
∗
∗ 2) The code in JMirtoRobot. java has been modified by Claudio S.
∗ De Mutiis ( claudio .de_mutiis@kcl.ac.uk) in August 2015.
∗ Claudio S. De Mutiis added the method public void resetCount (),
∗ which resets both of the encoders’ counts .
∗
∗ public void resetCount () {
∗ e0. resetCount ();
∗ e1. resetCount ();
∗ }
∗
∗ TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
∗ and RobotTesting . java WITH THE OLD VERSION OF JMirtoRobot.java
∗ WILL RESULT IN A COMPILATION ERROR !!!
∗
∗ The modified version of JMirtoRobot. java is needed to make
∗ everything compile and run correctly !!
∗
∗ ADDITIONAL CREDITS:
∗ − The class JMirtoRobot. java was developed by a team led by Dr
∗ Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
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∗ London.
∗ − In order to be able to work, the class RobotMission.java makes
∗ use of methods and classes developed by a team led by Dr
∗ Franco Raimondi at Middlesex University (see the folders lib
∗ and src and the files build .xml, README.md located in the
∗ folder java−asip−master).
∗ Source: https :// github .com/fraimondi/ java−asip
∗/

/∗ Useful Math Functions:
∗ 1) Math.toDegrees (...) −−> converts an angle from rad to deg
∗ 2) Math.toRadians (...) −−> converts an angle from deg to rad
∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/∗ VERY USEFUL FUNCTIONS OF MobileRobot.java (see the comments
∗ of MobileRobot.java file to learn about other available functions )
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ public void translate (double dist ) −−> Make the mobile robot
∗ translate by " dist " cm
∗ public void rotate (double change) −−> Make the mobile robot rotate
∗ by "change" degrees
∗ public void stop () −−> Make the mobile robot stop
∗ public void reset ( Point goal_new) −−> Reset the goal point in cm
∗ public void reset ( Point goal_new, double start_orientation_new )
∗ −−> Reset the goal point in cm and orientation
∗ in degrees
∗ public void goToGoal() −−> Make the mobile robot move to its goal
∗ point
∗ public void goToGoal(Point goal_new) −−> Make the mobile robot move
∗ to the new goal point
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗/

public class RobotMission {
public static void main(String [] args ) {

// create a start point at the origin (0,0) −−> current
// location of the robot
Point start = new Point ();
// create a goal point at (0, 150)
Point goal = new Point (0,150);

// specify the current orientation of the robot
double orientation = 180;
// create the robot object
MobileRobot robot = new MobileRobot(start , goal , orientation );
// send the robot to its goal location
robot .goToGoal();

}
}
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6.3 Appendix C: RobotTesting.java

/∗ File : RobotTesting . java
∗ Date: August 2015
∗ King’s College London −− Dept. of Informatics −−MSc in Robotics
∗ Author: Claudio S. De Mutiis ( claudio .de_mutiis@kcl.ac.uk)
∗ Purpose: Test the basic rotational and translational capabilities
∗ of the MIRTO robot, developed by a team led by Dr Franco
∗ Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
∗ London
∗
∗ IMPORTANT NOTES:
∗
∗ 1) WHERE FILES/FOLDERS SHOULD BE PLACED IN ORDER TO MAKE
∗ EVERYTHING COMPILE AND WORK CORRECTLY (on MIRTO’s SD
∗ CARD):
∗ ( i ) MobileRobot.java in /csd2222
∗ ( ii ) RobotMission.java in /csd2222
∗ ( iii ) RobotTesting . java in /csd2222
∗ ( iv ) The following files and folders should also be placed
∗ in /csd2222: java−asip. jar , jssc , libs , META−INF and
∗ uk.
∗ (v) The modified version of the file JMirtoRobot. java (see
∗ below) should be placed in
∗ /csd2222/uk/ac/mdx/cs/asip
∗
∗ Source: https :// github .com/fraimondi/ java−asip
∗
∗ 2) The code in JMirtoRobot. java has been modified by Claudio S.
∗ De Mutiis ( claudio .de_mutiis@kcl.ac.uk) in August 2015.
∗ Claudio S. De Mutiis added the method public void resetCount (),
∗ which resets both of the encoders’ counts .
∗
∗ public void resetCount () {
∗ e0. resetCount ();
∗ e1. resetCount ();
∗ }
∗
∗ TRYING TO COMPILE THE CLASSES MobileRobot.java, RobotMission.java
∗ and RobotTesting . java WITH THE OLD VERSION OF JMirtoRobot.java
∗ WILL RESULT IN A COMPILATION ERROR !!!
∗
∗ The modified version of JMirtoRobot. java is needed to make
∗ everything compile and run correctly !!
∗
∗ ADDITIONAL CREDITS:
∗ − The class JMirtoRobot. java was developed by a team led by Dr
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∗ Franco Raimondi (F.Raimondi@mdx.ac.uk) at Middlesex University
∗ London.
∗ − In order to be able to work, the class RobotTesting . java makes
∗ use of methods and classes developed by a team led by Dr
∗ Franco Raimondi at Middlesex University (see the folders lib
∗ and src and the files build .xml, README.md located in the
∗ folder java−asip−master).
∗ Source: https :// github .com/fraimondi/ java−asip
∗/

/∗ Useful Math Functions:
∗ 1) Math.toDegrees (...) −−> converts an angle from rad to deg
∗ 2) Math.toRadians (...) −−> converts an angle from deg to rad
∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/∗ VERY USEFUL FUNCTIONS OF MobileRobot.java (see the comments
∗ of MobileRobot.java file to learn about other available functions )
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ public void translate (double dist ) −−> Make the mobile robot
∗ translate by " dist " cm
∗ public void rotate (double change) −−> Make the mobile robot rotate
∗ by "change" degrees
∗ public void stop () −−> Make the mobile robot stop
∗ public void reset ( Point goal_new) −−> Reset the goal point in cm
∗ public void reset ( Point goal_new, double start_orientation_new )
∗ −−> Reset the goal point in cm and orientation
∗ in degrees
∗ public void goToGoal() −−> Make the mobile robot move to its goal
∗ point
∗ public void goToGoal(Point goal_new) −−> Make the mobile robot move
∗ to the new goal point
∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗/

public class RobotTesting {
public static void main(String [] args ) {

// create a start point at the origin (0,0) −−> current
// location of the robot
Point start = new Point ();
// create a goal point at (50, 50)
Point goal = new Point (50,50);
// specify the current orientation of the robot
double orientation = 180;
// create the robot object
MobileRobot robot = new MobileRobot(start , goal , orientation );
robot . translate (20);
robot . translate (−20);
robot . translate (20);
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robot . rotate (−180);
robot . rotate (90);

}
}
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